Development and routine implementation of deep learning algorithm for automatic brain metastases segmentation on MRI for RANO-BM criteria follow-up

分割 深度学习 人工智能 计算机科学 体积热力学 算法 磁共振成像 机器学习 医学物理学 医学 放射科 物理 量子力学
作者
Loïse Dessoude,Raphaëlle Lemaire,Roger Y. Andres,T. Leleu,Alexandre G. Leclercq,Amandine Desmonts,Typhaine Corroller,Amirath Fara Orou-Guidou,Luca Laduree,Loic Le Henaff,Joëlle Lacroix,Alexis Lechervy,Dinu Stefan,Aurélien Corroyer‐Dulmont
出处
期刊:NeuroImage [Elsevier BV]
卷期号:306: 121002-121002
标识
DOI:10.1016/j.neuroimage.2025.121002
摘要

The RANO-BM criteria, which employ a one-dimensional measurement of the largest diameter, are imperfect due to the fact that the lesion volume is neither isotropic nor homogeneous. Furthermore, this approach is inherently time-consuming. Consequently, in clinical practice, monitoring patients in clinical trials in compliance with the RANO-BM criteria is rarely achieved. The objective of this study was to develop and validate an AI solution capable of delineating brain metastases (BM) on MRI to easily obtain, using an in-house solution, RANO-BM criteria as well as BM volume in a routine clinical setting. A total of 27,456 post-Gadolinium-T1 MRI from 132 patients with BM were employed in this study. A deep learning (DL) model was constructed using the PyTorch and PyTorch Lightning frameworks, and the UNETR transfer learning method was employed to segment BM from MRI. A visual analysis of the AI model results demonstrates confident delineation of the BM lesions. The model shows 100 % accuracy in predicting RANO-BM criteria in comparison to that of an expert medical doctor. There was a high degree of overlap between the AI and the doctor's segmentation, with a mean DICE score of 0.77. The diameter and volume of the BM lesions were found to be concordant between the AI and the reference segmentation. The user interface developed in this study can readily provide RANO-BM criteria following AI BM segmentation. The in-house deep learning solution is accessible to everyone without expertise in AI and offers effective BM segmentation and substantial time savings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ms_Galaxea完成签到,获得积分10
3秒前
4秒前
柒柒完成签到,获得积分10
5秒前
科研通AI5应助我是楠个谁采纳,获得10
8秒前
xiaopan9083发布了新的文献求助10
10秒前
10秒前
Zz完成签到,获得积分10
12秒前
13秒前
三三四完成签到,获得积分10
14秒前
淡然靖柔发布了新的文献求助10
16秒前
情怀应助爱听歌笑寒采纳,获得10
17秒前
18秒前
完美世界应助长情的昊焱采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
20秒前
归尘应助科研通管家采纳,获得10
20秒前
归尘应助科研通管家采纳,获得10
21秒前
归尘应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
21秒前
归尘应助科研通管家采纳,获得10
21秒前
归尘应助科研通管家采纳,获得10
21秒前
归尘应助科研通管家采纳,获得10
21秒前
bc应助科研通管家采纳,获得30
21秒前
归尘应助科研通管家采纳,获得10
21秒前
归尘应助科研通管家采纳,获得10
21秒前
归尘应助科研通管家采纳,获得10
21秒前
归尘应助科研通管家采纳,获得10
21秒前
烟花应助科研通管家采纳,获得10
21秒前
归尘应助科研通管家采纳,获得10
21秒前
22秒前
xiaopan9083完成签到,获得积分10
22秒前
个性的紫菜应助临诗采纳,获得50
23秒前
Cherry发布了新的文献求助10
26秒前
28秒前
28秒前
32秒前
33秒前
37秒前
顺心牛排发布了新的文献求助10
37秒前
隐形曼青应助zj采纳,获得10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778595
求助须知:如何正确求助?哪些是违规求助? 3324214
关于积分的说明 10217326
捐赠科研通 3039397
什么是DOI,文献DOI怎么找? 1668059
邀请新用户注册赠送积分活动 798482
科研通“疑难数据库(出版商)”最低求助积分说明 758385