亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning framework for predicting susceptibility to obesity

作者
Warda M. Shaban,Hossam El-Din Moustafa,Mervat El-Seddek
出处
期刊:Scientific Reports [Springer Nature]
卷期号:15 (1): 35040-35040
标识
DOI:10.1038/s41598-025-20505-9
摘要

Abstract Obesity, currently the fifth leading cause of death worldwide, has seen a significant increase in prevalence over the past four decades. Timely identification of obesity risk facilitates proactive measures against associated factors. In this paper, we proposed a new machine learning framework for predicting susceptibility to obesity called ObeRisk. The proposed model consists of three main parts, preprocessing stage (PS), feature stage (FS), and obesity risk prediction (OPR). In PS, the used dataset was preprocessed through several processes; filling null values, feature encoding, removing outliers, and normalization. Then, the preprocessed data passed to FS where the most useful features were selected. In this paper, we introduced a new feature selection methodology called entropy-controlled quantum Bat algorithm (EC-QBA), which incorporated two variations to the traditional Bat algorithm (BA): (i) control BA parameters using Shannon entropy and (ii) update BA positions in local search using quantum mechanisms. Then, these selected features fed into several machine learning (ML) algorithms, including LR, LGBM, XGB, AdaBoost, MLP, KNN, and SVM. The final decision was obtained based on the majority voting. Experiment results demonstrated that the proposed EC-QBA outperformed the most recent feature selection methodology in terms of accuracy, precision, sensitivity, and F-measure. It introduced 96% accuracy, 96% precision, 96.5% sensitivity, and 96.25% F-measure. Additionally, experimental results indicated that the EC-QBA with the proposed OPR model delivered the best performance, surpassing modern strategies for predicting obesity by achieving maximum accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
浮游应助科研通管家采纳,获得10
13秒前
ZYP应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
21秒前
白华苍松发布了新的文献求助10
26秒前
YueLongZ发布了新的文献求助10
47秒前
YueLongZ完成签到,获得积分10
55秒前
59秒前
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
1分钟前
华仔应助jerseyxue采纳,获得10
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
1分钟前
2分钟前
jerseyxue发布了新的文献求助10
2分钟前
ZYP应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得30
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
ZYP应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
bji完成签到,获得积分10
2分钟前
jerseyxue完成签到,获得积分20
2分钟前
2分钟前
大胆的碧菡完成签到,获得积分10
2分钟前
2分钟前
拼搏姒发布了新的文献求助20
2分钟前
2分钟前
2分钟前
俊逸沛菡完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5503002
求助须知:如何正确求助?哪些是违规求助? 4598639
关于积分的说明 14464705
捐赠科研通 4532282
什么是DOI,文献DOI怎么找? 2483876
邀请新用户注册赠送积分活动 1467096
关于科研通互助平台的介绍 1439809