已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Consensus statements on the current landscape of artificial intelligence applications in endoscopy, addressing roadblocks, and advancing artificial intelligence in gastroenterology

医学 人工智能 内窥镜检查 计算机科学 机器学习 数据科学 放射科
作者
Sravanthi Parasa,Tyler M. Berzin,Cadman L. Leggett,Seth A. Gross,Alessandro Repici,Omer F. Ahmad,Austin W.T. Chiang,Nayantara Coelho–Prabhu,Jonathan Cohen,Evelien Dekker,Rajesh N. Keswani,Charles E. Kahn,Cesare Hassan,Nicholas Petrick,Peter Mountney,Jonathan Ng,Michael A. Riegler,Yuichi Mori,Yutaka Saito,Shyam Thakkar
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
被引量:8
标识
DOI:10.1016/j.gie.2023.12.003
摘要

Background and Aims

The American Society for Gastrointestinal Endoscopy (ASGE) AI Task Force along with experts in endoscopy, technology space, regulatory authorities, and other medical subspecialties initiated a consensus process that analyzed the current literature, highlighted potential areas, and outlined the necessary research in artificial intelligence (AI) to allow a clearer understanding of AI as it pertains to endoscopy currently.

Methods

A modified Delphi process was used to develop these consensus statements.

Results

Statement 1: Current advances in AI allow for the development of AI-based algorithms that can be applied to endoscopy to augment endoscopist performance in detection and characterization of endoscopic lesions. Statement 2: Computer vision–based algorithms provide opportunities to redefine quality metrics in endoscopy using AI, which can be standardized and can reduce subjectivity in reporting quality metrics. Natural language processing–based algorithms can help with the data abstraction needed for reporting current quality metrics in GI endoscopy effortlessly. Statement 3: AI technologies can support smart endoscopy suites, which may help optimize workflows in the endoscopy suite, including automated documentation. Statement 4: Using AI and machine learning helps in predictive modeling, diagnosis, and prognostication. High-quality data with multidimensionality are needed for risk prediction, prognostication of specific clinical conditions, and their outcomes when using machine learning methods. Statement 5: Big data and cloud-based tools can help advance clinical research in gastroenterology. Multimodal data are key to understanding the maximal extent of the disease state and unlocking treatment options. Statement 6: Understanding how to evaluate AI algorithms in the gastroenterology literature and clinical trials is important for gastroenterologists, trainees, and researchers, and hence education efforts by GI societies are needed. Statement 7: Several challenges regarding integrating AI solutions into the clinical practice of endoscopy exist, including understanding the role of human–AI interaction. Transparency, interpretability, and explainability of AI algorithms play a key role in their clinical adoption in GI endoscopy. Developing appropriate AI governance, data procurement, and tools needed for the AI lifecycle are critical for the successful implementation of AI into clinical practice. Statement 8: For payment of AI in endoscopy, a thorough evaluation of the potential value proposition for AI systems may help guide purchasing decisions in endoscopy. Reliable cost-effectiveness studies to guide reimbursement are needed. Statement 9: Relevant clinical outcomes and performance metrics for AI in gastroenterology are currently not well defined. To improve the quality and interpretability of research in the field, steps need to be taken to define these evidence standards. Statement 10: A balanced view of AI technologies and active collaboration between the medical technology industry, computer scientists, gastroenterologists, and researchers are critical for the meaningful advancement of AI in gastroenterology.

Conclusions

The consensus process led by the ASGE AI Task Force and experts from various disciplines has shed light on the potential of AI in endoscopy and gastroenterology. AI-based algorithms have shown promise in augmenting endoscopist performance, redefining quality metrics, optimizing workflows, and aiding in predictive modeling and diagnosis. However, challenges remain in evaluating AI algorithms, ensuring transparency and interpretability, addressing governance and data procurement, determining payment models, defining relevant clinical outcomes, and fostering collaboration between stakeholders. Addressing these challenges while maintaining a balanced perspective is crucial for the meaningful advancement of AI in gastroenterology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王QQ完成签到 ,获得积分10
1秒前
研友_Zlx3aZ完成签到,获得积分20
1秒前
司空靖琪发布了新的文献求助10
2秒前
健忘的安萱完成签到,获得积分10
2秒前
万木春完成签到 ,获得积分10
3秒前
Omni完成签到,获得积分10
4秒前
简单的沛蓝完成签到 ,获得积分10
5秒前
阿星捌完成签到 ,获得积分10
5秒前
雪白的乘风完成签到 ,获得积分10
5秒前
猛男完成签到,获得积分10
6秒前
HH发布了新的文献求助30
7秒前
二行完成签到 ,获得积分10
8秒前
9秒前
沉静一刀完成签到 ,获得积分0
10秒前
FFFFF完成签到 ,获得积分0
10秒前
紧张的似狮完成签到 ,获得积分10
13秒前
FFFFFFF应助健忘的安萱采纳,获得10
15秒前
17秒前
HMG1COA完成签到 ,获得积分10
17秒前
DChen完成签到 ,获得积分10
17秒前
Shadow完成签到 ,获得积分10
18秒前
zz完成签到,获得积分10
20秒前
lh完成签到 ,获得积分10
20秒前
英俊的铭应助自信的灵竹采纳,获得10
20秒前
Doria完成签到 ,获得积分10
21秒前
酒醉的蝴蝶完成签到 ,获得积分10
21秒前
谨慎颜演完成签到 ,获得积分10
22秒前
23秒前
24秒前
蓦然回首完成签到,获得积分10
25秒前
Dream点壹完成签到,获得积分10
26秒前
yujianhong发布了新的文献求助10
26秒前
酒渡完成签到,获得积分10
27秒前
土豪的新儿完成签到 ,获得积分10
28秒前
serendipity完成签到 ,获得积分10
30秒前
Owen应助儒雅HR采纳,获得10
30秒前
XIA完成签到 ,获得积分10
30秒前
Perion完成签到 ,获得积分10
31秒前
霸气的惜寒完成签到,获得积分10
32秒前
lemongulf完成签到 ,获得积分10
33秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916482
求助须知:如何正确求助?哪些是违规求助? 3461982
关于积分的说明 10919949
捐赠科研通 3188789
什么是DOI,文献DOI怎么找? 1762865
邀请新用户注册赠送积分活动 853191
科研通“疑难数据库(出版商)”最低求助积分说明 793716