SAT: Size-Aware Transformer for 3D Point Cloud Semantic Segmentation

粒度 计算机科学 分割 点云 变压器 人工智能 点(几何) 理论计算机科学 模式识别(心理学) 数学 物理 几何学 量子力学 电压 操作系统
作者
Junjie Zhou,Yongping Xiong,Chinwai Chiu,Fangyu Liu,Xiangyang Gong
出处
期刊:Cornell University - arXiv 被引量:6
标识
DOI:10.48550/arxiv.2301.06869
摘要

Transformer models have achieved promising performances in point cloud segmentation. However, most existing attention schemes provide the same feature learning paradigm for all points equally and overlook the enormous difference in size among scene objects. In this paper, we propose the Size-Aware Transformer (SAT) that can tailor effective receptive fields for objects of different sizes. Our SAT achieves size-aware learning via two steps: introduce multi-scale features to each attention layer and allow each point to choose its attentive fields adaptively. It contains two key designs: the Multi-Granularity Attention (MGA) scheme and the Re-Attention module. The MGA addresses two challenges: efficiently aggregating tokens from distant areas and preserving multi-scale features within one attention layer. Specifically, point-voxel cross attention is proposed to address the first challenge, and the shunted strategy based on the standard multi-head self attention is applied to solve the second. The Re-Attention module dynamically adjusts the attention scores to the fine- and coarse-grained features output by MGA for each point. Extensive experimental results demonstrate that SAT achieves state-of-the-art performances on S3DIS and ScanNetV2 datasets. Our SAT also achieves the most balanced performance on categories among all referred methods, which illustrates the superiority of modelling categories of different sizes. Our code and model will be released after the acceptance of this paper.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天空完成签到,获得积分10
刚刚
冰淇淋完成签到,获得积分10
2秒前
标致完成签到 ,获得积分10
5秒前
非常可爱完成签到,获得积分10
7秒前
Mickey完成签到,获得积分10
8秒前
飘逸锦程完成签到 ,获得积分10
8秒前
南昌黑人完成签到,获得积分10
9秒前
酷波er应助Mickey采纳,获得10
12秒前
科研通AI2S应助xxx采纳,获得10
12秒前
12秒前
13秒前
小宋应助西瓜采纳,获得10
16秒前
非常可爱发布了新的文献求助20
16秒前
17秒前
Brightan发布了新的文献求助10
18秒前
挡住所有坏运气888完成签到,获得积分10
19秒前
小蘑菇应助Jokko采纳,获得10
19秒前
jarenthar完成签到 ,获得积分10
20秒前
bkagyin应助雪山飞龙采纳,获得10
20秒前
AI完成签到,获得积分10
20秒前
大个应助霸气梦菲采纳,获得10
21秒前
Chawee发布了新的文献求助10
22秒前
23秒前
长情的涔完成签到 ,获得积分10
24秒前
swimming完成签到 ,获得积分10
25秒前
空白的卡卡完成签到,获得积分10
27秒前
TOTORO完成签到,获得积分10
28秒前
30秒前
英姑应助YY采纳,获得10
32秒前
我是老大应助YY采纳,获得10
32秒前
君君发布了新的文献求助30
34秒前
科研通AI5应助活泼的觅云采纳,获得10
35秒前
ca发布了新的文献求助10
36秒前
Li完成签到,获得积分10
39秒前
41秒前
紫麒麟完成签到,获得积分10
45秒前
45秒前
xllk应助活泼的觅云采纳,获得10
46秒前
内向的小凡完成签到,获得积分0
47秒前
胡大嘴先生完成签到,获得积分10
49秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445