Image segmentation and flow prediction of digital rock with U-net network

均方误差 磁导率 人工智能 地质学 随机森林 分割 计算机科学 模式识别(心理学) 数学 统计 遗传学 生物
作者
Fuyong Wang,Yun Zai
出处
期刊:Advances in Water Resources [Elsevier BV]
卷期号:172: 104384-104384 被引量:19
标识
DOI:10.1016/j.advwatres.2023.104384
摘要

Computed tomography (CT) images of sandstone contain rich reservoir information. Analyzing digital rock images is important for geological research and the flow in the subsurface. This paper presents a workflow for assessing digital rock petrophysical properties based on machine learning techniques, including 1) automatic segmentation of sandstone rock images using U-net networks, 2) permeability prediction using machine learning, and 3) flow simulation by deep learning. First, using the U-net network, the rock images are binary-segmented into matrix and pore, and multisegmented into the matrix, pore, and mineral. The accuracy and intersection over union (IOU) are used to evaluate the performance of image segmentation. The accuracy and IOU of binary segmentation results are 99.87% and 0.9986, and the results for multi-segmentation are 96.77% and 0.7281, respectively. Then, the key features of CT images influencing sandstone permeability are extracted, and the analysis of image features reveals that the hydraulic radius is the most important parameter for permeability prediction. After that, the sandstone permeability is predicted by long short-term memory (LSTM) and random forest (RF) and then compared with the permeability calculated by the lattice Boltzmann (LBM) method. The mean square error (MSE), mean absolute error (MAE), and root mean square error (RMSE) are used to quantitatively evaluate the error of permeability prediction. The studies show that the precision of RF in permeability prediction is higher than that of LSTM, and when all the feature parameters are used as input, the accuracy of permeability prediction is a little higher than that when only the hydraulic radius is used as input. Finally, this paper refines a new U-net model to predict the flow velocity field from CT images, and this new U-net model can reduce the computation time by 98.59% compared with the LBM method. This study will be significant for applying deep learning in simulate the flow in digital rock.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yelv123完成签到,获得积分10
1秒前
九月发布了新的文献求助200
2秒前
10秒前
polyhedron发布了新的文献求助50
12秒前
Jackylee发布了新的文献求助10
12秒前
14秒前
14秒前
开门啊菇凉完成签到,获得积分0
15秒前
秦时明月发布了新的文献求助10
15秒前
柚子蟹完成签到,获得积分10
15秒前
balko发布了新的文献求助10
16秒前
18秒前
乐乐应助zzz采纳,获得10
18秒前
动听文轩发布了新的文献求助10
18秒前
星辰大海应助liuuuuu采纳,获得10
18秒前
流行咯咯咯完成签到 ,获得积分10
21秒前
21秒前
超级的千青完成签到 ,获得积分10
24秒前
25秒前
26秒前
做不出来发布了新的文献求助10
26秒前
28秒前
haishixigua完成签到,获得积分10
28秒前
zzz发布了新的文献求助10
31秒前
liuuuuu发布了新的文献求助10
32秒前
传奇3应助Nulix采纳,获得10
32秒前
大模型应助sxin采纳,获得50
34秒前
共享精神应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
CipherSage应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
共享精神应助科研通管家采纳,获得10
35秒前
钟爱应助科研通管家采纳,获得10
36秒前
852应助科研通管家采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
Deerlu完成签到,获得积分10
36秒前
做不出来完成签到,获得积分20
39秒前
39秒前
kong完成签到,获得积分10
39秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816948
求助须知:如何正确求助?哪些是违规求助? 3360399
关于积分的说明 10407721
捐赠科研通 3078337
什么是DOI,文献DOI怎么找? 1690720
邀请新用户注册赠送积分活动 814023
科研通“疑难数据库(出版商)”最低求助积分说明 767985