亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image segmentation and flow prediction of digital rock with U-net network

均方误差 磁导率 人工智能 地质学 随机森林 分割 计算机科学 模式识别(心理学) 数学 统计 遗传学 生物
作者
Fuyong Wang,Yun Zai
出处
期刊:Advances in Water Resources [Elsevier]
卷期号:172: 104384-104384 被引量:19
标识
DOI:10.1016/j.advwatres.2023.104384
摘要

Computed tomography (CT) images of sandstone contain rich reservoir information. Analyzing digital rock images is important for geological research and the flow in the subsurface. This paper presents a workflow for assessing digital rock petrophysical properties based on machine learning techniques, including 1) automatic segmentation of sandstone rock images using U-net networks, 2) permeability prediction using machine learning, and 3) flow simulation by deep learning. First, using the U-net network, the rock images are binary-segmented into matrix and pore, and multisegmented into the matrix, pore, and mineral. The accuracy and intersection over union (IOU) are used to evaluate the performance of image segmentation. The accuracy and IOU of binary segmentation results are 99.87% and 0.9986, and the results for multi-segmentation are 96.77% and 0.7281, respectively. Then, the key features of CT images influencing sandstone permeability are extracted, and the analysis of image features reveals that the hydraulic radius is the most important parameter for permeability prediction. After that, the sandstone permeability is predicted by long short-term memory (LSTM) and random forest (RF) and then compared with the permeability calculated by the lattice Boltzmann (LBM) method. The mean square error (MSE), mean absolute error (MAE), and root mean square error (RMSE) are used to quantitatively evaluate the error of permeability prediction. The studies show that the precision of RF in permeability prediction is higher than that of LSTM, and when all the feature parameters are used as input, the accuracy of permeability prediction is a little higher than that when only the hydraulic radius is used as input. Finally, this paper refines a new U-net model to predict the flow velocity field from CT images, and this new U-net model can reduce the computation time by 98.59% compared with the LBM method. This study will be significant for applying deep learning in simulate the flow in digital rock.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DD发布了新的文献求助10
2秒前
nbing完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
7秒前
大模型应助DD采纳,获得10
7秒前
feifei0729发布了新的文献求助10
12秒前
15秒前
在水一方应助feifei0729采纳,获得30
21秒前
23秒前
小小发布了新的文献求助10
25秒前
DD发布了新的文献求助10
27秒前
li完成签到 ,获得积分10
30秒前
小小完成签到,获得积分10
34秒前
37秒前
简让完成签到 ,获得积分10
38秒前
从容芮应助科研通管家采纳,获得200
49秒前
爆米花应助科研通管家采纳,获得10
49秒前
49秒前
DD发布了新的文献求助10
50秒前
我是老大应助DD采纳,获得10
55秒前
56秒前
1分钟前
gangan完成签到,获得积分10
1分钟前
李健的小迷弟应助海派Hi采纳,获得10
1分钟前
1分钟前
江城一霸完成签到,获得积分10
1分钟前
可爱的函函应助禾子采纳,获得10
1分钟前
爱听歌迎夏完成签到 ,获得积分10
1分钟前
科研通AI2S应助FF采纳,获得10
1分钟前
成就念芹完成签到,获得积分10
1分钟前
李健的小迷弟应助齐鸿轩采纳,获得10
1分钟前
1分钟前
jie发布了新的文献求助10
1分钟前
1分钟前
蛋蛋发布了新的文献求助10
1分钟前
1分钟前
CodeCraft应助WXN采纳,获得10
1分钟前
1分钟前
1分钟前
贪玩丸子完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426276
求助须知:如何正确求助?哪些是违规求助? 4540112
关于积分的说明 14171636
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164