Development and Validation of MRI Imaging Biomarkers for Prostate Cancer Using Deep Learning

医学 前列腺癌 前列腺 概化理论 磁共振成像 卷积神经网络 肿瘤科 内科学 癌症 放射科 人工智能 数学 计算机科学 统计
作者
S. M. Khaled Hossain,S. M. Khaled Hossain,Arman Avesta,Abhay Nene,Ryan Maresca,Sanjay Aneja
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:117 (2): e393-e393
标识
DOI:10.1016/j.ijrobp.2023.06.1517
摘要

Given the increasing number of treatment options for patients with localized prostate cancer (PCa), there is a need for biomarkers to aid in risk stratification. Specifically, novel biomarkers can aid in the identification of high-risk phenotypes among similar patients in traditional NCCN risk groupings. One promising area for development is using pre-treatment prostate MRI to identify imaging biomarkers to identify prostate cancer patients at highest risk for recurrence. We hypothesized that deep learning could be leveraged to identify imaging biomarkers of aggressive PCa from pre-treatment prostate MRIs.Our study included 1,020 patients treated at our institution between 2010-2022. Given pathologic extraprostatic extension (EPE) and seminal vesicle invasion (SVI) are associated with higher risk of treatment failure, we hypothesized that deep learning models which identified radiographic EPE and SVI would provide non-invasive imaging biomarkers associated with PCa prognosis. We trained two separate deep learning models using convolutional neural networks to predict SVI and EPE respectively. The model inputs were T2W prostate MRIs (n = 894) and models consisted of 8 convolutional layers. Dropout, L2 regularization, and data augmentation were used to improve model generalizability and reduce overfitting. Discriminatory ability of each model was measured using AUC on a blinded external test set of 221 patients. To assess the clinical utility of our imaging biomarkers, log-rank tests were used to evaluate biochemical free survival (BFS) for patients classified as high risk to patients classified as low risk. Biochemical failure was defined as post-treatment PSA >0.1 for patients who underwent radical prostatectomy (RP) or PSA >2ng/ml above nadir for patients receiving radiation therapy.Within our cohort of 1,020 patients the median age was 66 with a median follow up of 4 years. 49.3% (n = 503) underwent RP and 50.7% (n = 517) received EBRT. 4% (n = 41) were low risk, 62.4% (n = 636) were intermediate risk, and 33% (n = 337) were high risk based on NCCN criteria. Deep learning models showed good discriminatory ability for both EPE (AUC 0.66) and SVI (AUC 0.74). Both imaging biomarkers showed prognostic ability to identify high risk prostate phenotypes. Patients deemed high risk based on EPE classifier had worse BFS (median 5 vs 9 years, p<.001). Similarly, patients classified as high risk based on SVI also showed worse BFS (median 5 vs 9 years, p = 0.024). Among intermediate risk patients, EPE biomarker showed an ability to identify high risk phenotypes (median 6 vs 9 years, p = 0.024).Deep learning classifiers of prostate MRIs demonstrated the ability to stratify high-risk prostate cancer phenotypes beyond traditional risk paradigms. Imaging biomarkers represent a non-invasive method to help aid in the personalization of treatment for patients with localized prostate cancer and identify patients who potentially require treatment escalation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Zlinco完成签到,获得积分10
2秒前
4秒前
CC完成签到,获得积分10
4秒前
阳佟若剑完成签到,获得积分10
5秒前
Docsiwen完成签到 ,获得积分10
5秒前
baobeikk完成签到,获得积分10
5秒前
追寻的问玉完成签到 ,获得积分10
6秒前
害羞电灯胆完成签到,获得积分10
6秒前
研友_nqv2WZ完成签到,获得积分10
7秒前
ztt完成签到,获得积分10
8秒前
JY完成签到,获得积分10
9秒前
惠凡白发布了新的文献求助10
9秒前
清蒸可达鸭完成签到,获得积分10
10秒前
11秒前
fzhou完成签到 ,获得积分10
12秒前
prion完成签到,获得积分10
12秒前
酷炫的大碗完成签到,获得积分10
14秒前
潇湘阁我爱吃完成签到,获得积分10
14秒前
15秒前
CMD完成签到 ,获得积分10
16秒前
rayawe完成签到 ,获得积分10
16秒前
17秒前
Accept完成签到 ,获得积分10
18秒前
liaodongjun完成签到,获得积分10
18秒前
Gyy完成签到,获得积分10
18秒前
麻祖完成签到 ,获得积分10
19秒前
雪白砖家完成签到 ,获得积分10
21秒前
娃娃菜妮完成签到 ,获得积分10
21秒前
鳗鱼白竹完成签到,获得积分10
21秒前
乔诶次完成签到 ,获得积分10
22秒前
小白完成签到,获得积分10
23秒前
23秒前
Zing完成签到 ,获得积分10
23秒前
halo关注了科研通微信公众号
24秒前
Cherry完成签到,获得积分10
25秒前
赵文若完成签到,获得积分10
25秒前
25秒前
Zo完成签到,获得积分10
26秒前
小陈完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946218
求助须知:如何正确求助?哪些是违规求助? 3491139
关于积分的说明 11059274
捐赠科研通 3222093
什么是DOI,文献DOI怎么找? 1780863
邀请新用户注册赠送积分活动 865877
科研通“疑难数据库(出版商)”最低求助积分说明 800083