亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving agricultural field parcel delineation with a dual branch spatiotemporal fusion network by integrating multimodal satellite data

遥感 对偶(语法数字) 领域(数学) 融合 计算机科学 传感器融合 卫星 地理 人工智能 数学 航空航天工程 纯数学 工程类 艺术 语言学 哲学 文学类
作者
Zhiwen Cai,Qiong Hu,Xinyu Zhang,Jingya Yang,Haodong Wei,Jiayue Wang,Yelu Zeng,Gaofei Yin,Wenjuan Li,Liangzhi You,Baodong Xu,Zhihua Shi
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:205: 34-49 被引量:41
标识
DOI:10.1016/j.isprsjprs.2023.09.021
摘要

Accurate spatial information for agricultural field parcels is important for agricultural production management and understanding agro-industrialization and intensification. However, traditional remote sensing methods that rely on single-modal or single-date data struggle to identify heterogeneous field parcels, particularly in regions dominated by smallholder farming systems. To address this challenge, we proposed a Dual branch Spatiotemporal Fusion Network (DSTFNet) that integrated very high-resolution (VHR) images and medium-resolution satellite image time series (MRSITS) to extract agricultural field parcels over various landscapes. The DSTFNet consisted of two branches: a spatial branch that extracted spatial features from VHR images and a temporal branch that explored seasonal spectral dynamics from MRSITS data by using ConvLSTM units and an attention module. We evaluated the DSTFNet in four regions across China by using GF-2 and Sentinel-2 data. The results showed that DSTFNet performed well in delineating agricultural field parcels, achieving the highest Matthew’s correlation coefficient (MCC) = 0.823 for the field extent, the highest F1-score of edge (Fedge) = 0.865 for field boundary, and the lowest errors of segmentation evaluation index (SEI) = 0.191 for the vectorized field parcels in Hubei province. In addition, DSTFNet significantly outperformed two single-branch models that used VHR or MRSITS alone, as well as existing BsiNet, ResUNet_a, UNet and RAUNet models. DSTFNet also showed good spatial transferability in distinct regions without training data (on average, MCC = 0.728, Fedge = 0.729, and SEI = 0.281 for three target regions). Using limited training data to fine-tune the DSTFNet can further improve its ability to delineate field parcels over complex regions. The visualization analysis of temporal attention weights demonstrated that DSTFNet can well capture cropland spectral dynamics, making it advantageous in extracting diverse cropland parcels. By exploiting important spectral, spatial and temporal information from multimodal satellite data, DSTFNet provided an effective, robust, and transferable solution for accurately delineating agricultural field parcels across heterogeneous farming systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美的海完成签到,获得积分10
3秒前
WebCasa发布了新的文献求助10
25秒前
彭于晏应助库里强采纳,获得10
28秒前
笨笨山芙完成签到 ,获得积分10
1分钟前
lhn完成签到 ,获得积分10
1分钟前
WebCasa应助科研通管家采纳,获得10
2分钟前
WebCasa应助科研通管家采纳,获得10
2分钟前
嘿嘿应助爱笑的静洁采纳,获得10
2分钟前
2分钟前
库里强发布了新的文献求助10
2分钟前
3分钟前
共享精神应助仁爱的帽子采纳,获得10
3分钟前
4分钟前
WebCasa应助科研通管家采纳,获得10
4分钟前
FashionBoy应助科研通管家采纳,获得10
4分钟前
yayika完成签到,获得积分10
4分钟前
两袖清风完成签到 ,获得积分10
4分钟前
WebCasa发布了新的文献求助10
5分钟前
李健的小迷弟应助huang采纳,获得10
5分钟前
5分钟前
huang完成签到,获得积分10
5分钟前
WebCasa应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
情怀应助科研通管家采纳,获得10
5分钟前
huang发布了新的文献求助10
6分钟前
6分钟前
7分钟前
7分钟前
7分钟前
WebCasa应助科研通管家采纳,获得10
8分钟前
星辰大海应助科研通管家采纳,获得10
8分钟前
Forever完成签到,获得积分10
8分钟前
Ethan完成签到,获得积分10
8分钟前
石头完成签到 ,获得积分10
8分钟前
小郭发布了新的文献求助20
8分钟前
liuliqiong完成签到,获得积分10
9分钟前
9分钟前
9分钟前
深情安青应助科研通管家采纳,获得10
10分钟前
充电宝应助科研通管家采纳,获得10
10分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4118284
求助须知:如何正确求助?哪些是违规求助? 3656893
关于积分的说明 11577059
捐赠科研通 3359155
什么是DOI,文献DOI怎么找? 1845531
邀请新用户注册赠送积分活动 910827
科研通“疑难数据库(出版商)”最低求助积分说明 827070