亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel hybrid model for stock price forecasting integrating Encoder Forest and Informer

计算机科学 人工智能 排名(信息检索) 机器学习 自编码 编码器 小波 数据挖掘 深度学习 操作系统
作者
Shangsheng Ren,Xu Wang,Xu Zhou,Yuan Zhou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:234: 121080-121080 被引量:21
标识
DOI:10.1016/j.eswa.2023.121080
摘要

Stock forecasting plays a pivotal role in time series forecasting as it enables informed and effective investment decisions by minimizing risks. In this paper, a novel hybrid model for stock price forecasting is proposed to explore the impact of a decomposition-reconstruction method fused with machine learning models, aiming to enhance the predictive ability of the model. Following the decomposition-prediction-reconstruction principle, the hybrid model incorporates wavelet transform, integrating Encoder Forest (EF) with Informer. To mitigate the influence of long-time series noise on stock forecasting, the original data is decomposed into high-frequency signal components (CD) and low-frequency signal components (CA). The Informer and Encoder Forest are trained to predict the future CA and CD, respectively. The hybrid model is implemented for all stocks in three industries of the china stock market. Several models including MLP, RNN, LSTM, Informer, WT + RNN + DT, WT + LSTM + RF, EMD + Informer + EF, VMD + Informer + EF, CEEMD + Informer + EF, and CEEMDAN + Informer + EF are designed as compared methods to verify the superiority and advancement of the proposed technique. Evaluating the performance of individual models reveals that the prediction accuracy follows the ranking: MLP < RNN < LSTM < Informer. Comparing the results of the hybrid model with those of the individual models demonstrates that the hybrid model improves prediction accuracy. This comparison also indicates that the wavelet transform and tree models can enhance the accuracy of the model without altering the initial ranking of the prediction effect. It is worth noting that WT and EMD-like methods employ different data decomposition approaches, leading to diverse outcomes. Experimental results indicate that WT is better suited for a hybrid model that combines two distinct methods. All experimental results indicated that the proposed hybrid model has higher prediction accuracy, stronger generalization ability, and stronger practicability, which is more suitable for Stock forecasting problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
1分钟前
1分钟前
2分钟前
拓跋涵易完成签到,获得积分10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
科研通AI5应助Marciu33采纳,获得10
3分钟前
Ava应助整齐道消采纳,获得10
3分钟前
平常的毛豆应助puzhongjiMiQ采纳,获得10
4分钟前
FashionBoy应助puzhongjiMiQ采纳,获得10
4分钟前
Accepted应助puzhongjiMiQ采纳,获得10
4分钟前
平常的毛豆应助puzhongjiMiQ采纳,获得10
4分钟前
Lucas应助puzhongjiMiQ采纳,获得10
4分钟前
orixero应助puzhongjiMiQ采纳,获得10
4分钟前
4分钟前
整齐道消发布了新的文献求助10
4分钟前
puzhongjiMiQ完成签到,获得积分10
4分钟前
5分钟前
5分钟前
丘比特应助重要纸飞机采纳,获得10
5分钟前
5分钟前
Marciu33发布了新的文献求助10
6分钟前
整齐道消完成签到,获得积分10
6分钟前
Marciu33完成签到,获得积分10
6分钟前
科研通AI5应助Marciu33采纳,获得10
6分钟前
善学以致用应助整齐道消采纳,获得10
6分钟前
领导范儿应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
yuqinghui98完成签到 ,获得积分10
7分钟前
整齐道消发布了新的文献求助10
7分钟前
wujiwuhui完成签到 ,获得积分10
8分钟前
逝水无痕发布了新的文献求助10
9分钟前
陈好好完成签到 ,获得积分10
9分钟前
丘比特应助科研通管家采纳,获得10
11分钟前
yy发布了新的文献求助10
11分钟前
yy完成签到,获得积分10
12分钟前
morina9301完成签到,获得积分10
12分钟前
houyp0326完成签到,获得积分10
12分钟前
在水一方应助Emon采纳,获得10
13分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819930
求助须知:如何正确求助?哪些是违规求助? 3362797
关于积分的说明 10418814
捐赠科研通 3081174
什么是DOI,文献DOI怎么找? 1694991
邀请新用户注册赠送积分活动 814788
科研通“疑难数据库(出版商)”最低求助积分说明 768522