An energy management strategy for fuel cell hybrid electric vehicle based on HHO-BiLSTM-TCN-Self Attention speed prediction

工程类 一般化 辍学(神经网络) 区间(图论) 计算机科学 模拟 汽车工程 人工智能 机器学习 数学 数学分析 组合数学
作者
Mingzhang Pan,Changcheng Fu,Cao Xinxin,Wei Guan,Liang Lu,Li Ding,Jinkai Gu,Dongli Tan,Zhiqing Zhang,Xingjia Man,Nianye Ye,Haifeng Qin
出处
期刊:Energy [Elsevier BV]
卷期号:307: 132734-132734 被引量:4
标识
DOI:10.1016/j.energy.2024.132734
摘要

This research aims to improve the performance and economics of fuel cell hybrid electric vehicles (FCHEVs), validated and established by introducing an innovative energy management strategy (EMS) based on a speed-predictive fusion model. Firstly, a mixed prediction model was built based on BiLSTM, TCN, and Self-attention (SA) mechanism to accurately search, capture and fuse multi-granularity features in time series. Then, Harris-Hawk Optimization (HHO) was used to optimize the dropout rate and model learning rate of the combined BiLSTM-TCN-SA time series model to improve the prediction accuracy and generalization ability of the model. Finally, stochastic model predictive control was combined with BiLSTM-TCN-SA to form SMPC-NSGA III algorithm, which was used for multi-objective optimization of fuel economy, fuel cell durability and battery durability. In this study, the effectiveness of the proposed strategy was verified under the condition of CLTC-P driving cycle. The experimental results showed that RMSE and R2 of HHO-BiLSTM-TCN-SA velocity prediction model are 1.169 and 0.998, respectively. In addition, the output of the model is within the confidence interval of 97.5% of the real speed, and there is no significant difference, which is statistically significant. Under the SMPC-NSGA III strategy, the average efficiency of the fuel cell was increased by 12% and 1% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助DDDOG采纳,获得10
2秒前
诚心的香水完成签到,获得积分20
4秒前
5秒前
鲤鱼完成签到 ,获得积分10
5秒前
Owen应助taizaizi采纳,获得30
6秒前
8秒前
8秒前
10秒前
10秒前
繁荣的青旋完成签到,获得积分10
11秒前
SciGPT应助guxue采纳,获得10
11秒前
zho发布了新的文献求助10
12秒前
12秒前
12秒前
77完成签到 ,获得积分10
13秒前
舒心靖琪完成签到 ,获得积分10
13秒前
15秒前
16秒前
17秒前
18秒前
甘楽发布了新的文献求助10
18秒前
ls完成签到,获得积分10
22秒前
Hello应助甘楽采纳,获得10
22秒前
DrWang完成签到,获得积分10
22秒前
Solar energy完成签到,获得积分10
23秒前
23秒前
24秒前
思源应助清晨牛采纳,获得10
24秒前
大模型应助Mr.Left采纳,获得10
25秒前
LLY完成签到,获得积分10
25秒前
28秒前
朗源Wu给朗源Wu的求助进行了留言
29秒前
shuyi完成签到 ,获得积分10
30秒前
科研通AI5应助飞翔的翅膀采纳,获得10
32秒前
00发布了新的文献求助10
35秒前
yj完成签到,获得积分10
37秒前
充电宝应助朝闻道采纳,获得10
38秒前
苏夏完成签到 ,获得积分10
38秒前
有魅力强炫完成签到,获得积分10
40秒前
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781487
求助须知:如何正确求助?哪些是违规求助? 3327136
关于积分的说明 10229537
捐赠科研通 3041969
什么是DOI,文献DOI怎么找? 1669742
邀请新用户注册赠送积分活动 799258
科研通“疑难数据库(出版商)”最低求助积分说明 758757