材料科学
多重耐药
纳米尺度
细菌
纳米技术
冶金
微生物学
抗生素
生物
遗传学
作者
Yi Jia,Congcong Pei,Tangming Zhang,Qin Qin,Xiaoxia Gu,Y. Li,Danping Ruan,Jingjing Wan,Liang Qiao
标识
DOI:10.1021/acsami.4c10935
摘要
The rising incidence of infections caused by multidrug-resistant bacteria highlights the urgent need for innovative bacterial eradication strategies. Metal ions, such as Zn2+ and Co2+, have bactericidal effects by disrupting bacterial cell membranes and interfering with essential cellular processes. This has led to increased attention toward metal–organic frameworks (MOFs) as potential nonantibiotic bactericidal agents. However, the uniform and enhanced localized release of bactericidal metal ions remains a challenge. Herein, we introduce a nanoscale multipatterned Zn,Co-ZIF@FeOOH, featuring a multipod-like morphology with spiky corners, and dual-bactericidal metal ions. Compared to pure Zn,Co-ZIF, the multipod-like morphology of Zn,Co-ZIF@FeOOH exhibits enhanced adhesion toward bacterial surfaces via topological and multiple interactions of electrostatic interaction, significantly increasing the local release of Zn2+ and Co2+. Additionally, the spiky corners of the spindle-shaped FeOOH nanorods physically penetrate bacterial membranes, causing damage and further enhancing adhesion to bacteria. Nine Gram-negative and one Gram-positive bacteria were selected for in vitro test. Notably, the nanoscale multipatterned Zn,Co-ZIF@FeOOH exhibited high bactericidal efficacy against various multidrug-resistant bacteria, including extended-spectrum β-lactamase-producing (ESBL+) bacteria and carbapenem-resistant bacteria, performing well in both acidic and neutral environments. The wound healing activity of Zn,Co-ZIF@FeOOH was further demonstrated using female Balb/c mouse models infected with bacteria, where the materials show robust antibacterial efficacy and commendable biocompatibility. This study showcases the assembly of metal oxide/MOF composites for nanoscale multipatterning, aims at synergistic bacterial eradication and offers insights into developing nanomaterial-based strategies against multidrug-resistant bacteria.
科研通智能强力驱动
Strongly Powered by AbleSci AI