Velocity field reconstruction of mixing flow in T-junctions based on particle image database using deep generative models

物理 混合(物理) 领域(数学) 流量(数学) 数据库 矢量场 粒子(生态学) 图像(数学) 机械 经典力学 人工智能 计算机科学 量子力学 海洋学 地质学 纯数学 数学
作者
Yuzhuo Yin,Yuang Jiang,Mei Lin,Qiuwang Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8) 被引量:3
标识
DOI:10.1063/5.0215252
摘要

Flow field data obtained by particle image velocimetry (PIV) could include isolated large damaged areas that are caused by the refractive index, light transmittance, and tracking capability of particles. The traditional deep learning reconstruction methods of PIV fluid data are all based on the velocity field database, and these methods could not achieve satisfactory results for large flow field missing areas. We propose a new reconstruction method of fluid data using PIV particle images. Since PIV particle images are the source of PIV velocity field data, particle images include more complete underlying information than velocity field data. We study the application of PIV experimental particle database in the reconstruction of flow field data using deep generative networks (GAN). To verify the inpainting effect of velocity field using PIV particle images, we design two semantic inpainting methods based on two GAN models with PIV particle image database and PIV fluid velocity database, respectively. Then, the qualitative and quantitative inpainting results of two PIV databases are compared on different metrics. For the reconstruction of velocity field, the mean relative error of using the particle image database could achieve a 52% reduction compared to a velocity database. For the reconstruction of vorticity field, the maximal and mean relative errors can reduce by 50% when using the particle image database. The maximum inpainting errors of two database inputs are both mainly concentrated on the turbulence vortex area, which means the reconstruction of complex non-Gaussian distribution of turbulence vortex is a problem for semantic inpainting of the experimental data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shiku完成签到,获得积分10
刚刚
衣蝉完成签到 ,获得积分10
1秒前
heihei发布了新的文献求助10
3秒前
3秒前
wanci应助cang采纳,获得10
3秒前
6秒前
Ayan完成签到,获得积分10
9秒前
9秒前
ccm应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
leaolf应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
Sigramm应助科研通管家采纳,获得10
10秒前
咩咩应助科研通管家采纳,获得10
10秒前
周周应助科研通管家采纳,获得10
10秒前
开心浩阑应助科研通管家采纳,获得20
10秒前
10秒前
ttt完成签到,获得积分10
12秒前
13秒前
opus17完成签到,获得积分10
14秒前
aloopp完成签到,获得积分10
15秒前
承允完成签到,获得积分10
16秒前
立冬完成签到,获得积分10
16秒前
cang发布了新的文献求助10
18秒前
jerry完成签到,获得积分10
18秒前
取名叫做利完成签到,获得积分10
19秒前
烟花应助aloopp采纳,获得10
19秒前
整齐乐驹完成签到,获得积分10
19秒前
wanci应助Sunshine采纳,获得10
22秒前
一一完成签到,获得积分10
23秒前
英姑应助开心人达采纳,获得10
26秒前
华新完成签到,获得积分10
26秒前
北沐城歌应助cang采纳,获得10
26秒前
julien完成签到,获得积分10
27秒前
左左右右完成签到,获得积分10
28秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4631486
求助须知:如何正确求助?哪些是违规求助? 4028353
关于积分的说明 12464447
捐赠科研通 3714431
什么是DOI,文献DOI怎么找? 2049289
邀请新用户注册赠送积分活动 1080992
科研通“疑难数据库(出版商)”最低求助积分说明 963428