CNN-ELMNet: Fault Diagnosis of Induction Motor Bearing Based on Cross-modal Vector Fusion

计算机科学 卷积神经网络 断层(地质) 人工智能 模式识别(心理学) 超参数 定子 情态动词 联营 特征提取 感应电动机 机器学习 工程类 电压 电气工程 地震学 地质学 机械工程 化学 高分子化学
作者
Lingzhi Yi,Yi Zhang,Jun Zhan,Yahui Wang,Tao Sun,Jiao Long,Jiangyong Liu,Li Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad6e14
摘要

Abstract As the primary driving equipment in industrial, accurate fault diagnosis and condition monitoring of induction motor is crucial for ensuring operational safety. This paper focuses on the bearing faults of induction motors, which have a substantial impact on both the mechanical and electromagnetic systems of the motors. However, in diagnostic tasks, we are faced with the challenges of multi-source, multi-modal data, significant influence from environmental noise, and minimal differentiation between fault data. This paper proposed a novel cross-modal vector fusion fault diagnosis and classification model (CNN-ELMNet), which includes a Cross-Modal Vector Fusion Network (VF) based on D-S evidence theory, feature extraction layer (FE) and classification layer (CL). Specifically, the VF prioritizes the integration of diagnostic results from individual vibration signals or stator current signals within convolutional neural networks with the features of the input implicit vectors as decision-making evidence, followed by weighted vector fusion through D-S evidence theory at the decision level. The FE focuses on retaining the convolutional, pooling, and fully connected layers of the convolutional network and freezing the final fully connected layer, thus preserving training parameters and fully utilizing the network's powerful feature extraction capabilities. The CL includes an Extreme Learning Machine optimized for random hyperparameters using the SAO algorithm, which offers rapid convergence and high classification recognition rates. The CNN-ELMNet model combines a convolutional network with an Extreme Learning Machine optimized by the SAO algorithm, which not only preserves the model's feature extraction capability but also enhances the convergence speed and classification recognition rate of the model. Experimental results on real datasets demonstrate that the proposed model exhibits strong stability, generalization, and high accuracy in fault diagnosis, achieving an accuracy rate of 99.29% and 98.75%. This provides a more feasible solution for the bearing fault diagnosis of induction motors and holds promising prospects for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玛卡巴卡完成签到 ,获得积分10
1秒前
2秒前
2秒前
英俊的铭应助Asuna采纳,获得10
3秒前
jinzhen完成签到,获得积分10
5秒前
zzzzz完成签到,获得积分10
6秒前
罗伯特骚塞完成签到,获得积分10
6秒前
7秒前
jinzhen发布了新的文献求助10
8秒前
9秒前
蓝色芒果发布了新的文献求助10
11秒前
杨师傅完成签到 ,获得积分10
15秒前
泡泡啰叽完成签到,获得积分10
18秒前
19秒前
畅快的忆丹完成签到,获得积分10
19秒前
小五完成签到 ,获得积分10
21秒前
21秒前
科研通AI5应助Zxj采纳,获得10
21秒前
iehaoang完成签到 ,获得积分10
22秒前
852应助科研通管家采纳,获得10
24秒前
chiaoyin999应助科研通管家采纳,获得10
24秒前
24秒前
25秒前
qiao应助繁荣的又夏采纳,获得10
27秒前
凤兮完成签到 ,获得积分10
32秒前
36秒前
43秒前
内向映天完成签到 ,获得积分10
47秒前
蓝色芒果完成签到,获得积分10
47秒前
阔达东蒽发布了新的文献求助10
50秒前
福荔完成签到 ,获得积分10
54秒前
李健应助小兔子采纳,获得10
57秒前
59秒前
1分钟前
1分钟前
Jasper应助称心寒松采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
rad1413完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781306
求助须知:如何正确求助?哪些是违规求助? 3326832
关于积分的说明 10228424
捐赠科研通 3041839
什么是DOI,文献DOI怎么找? 1669591
邀请新用户注册赠送积分活动 799153
科研通“疑难数据库(出版商)”最低求助积分说明 758751