已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CNN-ELMNet: Fault Diagnosis of Induction Motor Bearing Based on Cross-modal Vector Fusion

计算机科学 卷积神经网络 断层(地质) 人工智能 模式识别(心理学) 超参数 定子 情态动词 联营 特征提取 感应电动机 机器学习 工程类 电压 电气工程 地质学 机械工程 地震学 化学 高分子化学
作者
Lingzhi Yi,Yi Zhang,Jun Zhan,Yahui Wang,Tao Sun,Jiao Long,Jiangyong Liu,Li Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad6e14
摘要

Abstract As the primary driving equipment in industrial, accurate fault diagnosis and condition monitoring of induction motor is crucial for ensuring operational safety. This paper focuses on the bearing faults of induction motors, which have a substantial impact on both the mechanical and electromagnetic systems of the motors. However, in diagnostic tasks, we are faced with the challenges of multi-source, multi-modal data, significant influence from environmental noise, and minimal differentiation between fault data. This paper proposed a novel cross-modal vector fusion fault diagnosis and classification model (CNN-ELMNet), which includes a Cross-Modal Vector Fusion Network (VF) based on D-S evidence theory, feature extraction layer (FE) and classification layer (CL). Specifically, the VF prioritizes the integration of diagnostic results from individual vibration signals or stator current signals within convolutional neural networks with the features of the input implicit vectors as decision-making evidence, followed by weighted vector fusion through D-S evidence theory at the decision level. The FE focuses on retaining the convolutional, pooling, and fully connected layers of the convolutional network and freezing the final fully connected layer, thus preserving training parameters and fully utilizing the network's powerful feature extraction capabilities. The CL includes an Extreme Learning Machine optimized for random hyperparameters using the SAO algorithm, which offers rapid convergence and high classification recognition rates. The CNN-ELMNet model combines a convolutional network with an Extreme Learning Machine optimized by the SAO algorithm, which not only preserves the model's feature extraction capability but also enhances the convergence speed and classification recognition rate of the model. Experimental results on real datasets demonstrate that the proposed model exhibits strong stability, generalization, and high accuracy in fault diagnosis, achieving an accuracy rate of 99.29% and 98.75%. This provides a more feasible solution for the bearing fault diagnosis of induction motors and holds promising prospects for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助许廷奇采纳,获得10
1秒前
2秒前
3秒前
min完成签到 ,获得积分10
5秒前
5秒前
微昆界发布了新的文献求助10
6秒前
小愿张完成签到,获得积分10
7秒前
深情安青应助眼睛大的仰采纳,获得10
7秒前
7秒前
8秒前
方老师发布了新的文献求助10
8秒前
小清新发布了新的文献求助10
10秒前
馆长举报塞维娅求助涉嫌违规
11秒前
农大彭于晏完成签到,获得积分10
12秒前
研友_8DAv0L发布了新的文献求助10
14秒前
14秒前
Sciolto完成签到 ,获得积分10
15秒前
孙秋颖完成签到,获得积分20
15秒前
科研通AI5应助微昆界采纳,获得10
15秒前
欢呼半山完成签到 ,获得积分10
17秒前
Cara完成签到,获得积分10
19秒前
我是老大应助研友_8DAv0L采纳,获得10
20秒前
Colin发布了新的文献求助10
21秒前
许廷奇发布了新的文献求助10
21秒前
微笑发布了新的文献求助10
23秒前
李爱国应助曾维嘉采纳,获得10
25秒前
26秒前
27秒前
圆圆的大脑完成签到,获得积分10
28秒前
selina发布了新的文献求助10
30秒前
幸福大白发布了新的文献求助10
32秒前
careyzhou发布了新的文献求助10
34秒前
34秒前
酷波er应助给好评采纳,获得10
35秒前
SG关闭了SG文献求助
35秒前
36秒前
38秒前
Nakjeong完成签到 ,获得积分10
39秒前
善学以致用应助小清新采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4566637
求助须知:如何正确求助?哪些是违规求助? 3989995
关于积分的说明 12353948
捐赠科研通 3661637
什么是DOI,文献DOI怎么找? 2017767
邀请新用户注册赠送积分活动 1052251
科研通“疑难数据库(出版商)”最低求助积分说明 939760