亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CNN-ELMNet: Fault Diagnosis of Induction Motor Bearing Based on Cross-modal Vector Fusion

计算机科学 卷积神经网络 断层(地质) 人工智能 模式识别(心理学) 超参数 定子 情态动词 联营 特征提取 感应电动机 机器学习 工程类 电压 电气工程 地质学 机械工程 地震学 化学 高分子化学
作者
Lingzhi Yi,Yi Zhang,Jun Zhan,Yahui Wang,Tao Sun,Jiao Long,Jiangyong Liu,Li Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad6e14
摘要

Abstract As the primary driving equipment in industrial, accurate fault diagnosis and condition monitoring of induction motor is crucial for ensuring operational safety. This paper focuses on the bearing faults of induction motors, which have a substantial impact on both the mechanical and electromagnetic systems of the motors. However, in diagnostic tasks, we are faced with the challenges of multi-source, multi-modal data, significant influence from environmental noise, and minimal differentiation between fault data. This paper proposed a novel cross-modal vector fusion fault diagnosis and classification model (CNN-ELMNet), which includes a Cross-Modal Vector Fusion Network (VF) based on D-S evidence theory, feature extraction layer (FE) and classification layer (CL). Specifically, the VF prioritizes the integration of diagnostic results from individual vibration signals or stator current signals within convolutional neural networks with the features of the input implicit vectors as decision-making evidence, followed by weighted vector fusion through D-S evidence theory at the decision level. The FE focuses on retaining the convolutional, pooling, and fully connected layers of the convolutional network and freezing the final fully connected layer, thus preserving training parameters and fully utilizing the network's powerful feature extraction capabilities. The CL includes an Extreme Learning Machine optimized for random hyperparameters using the SAO algorithm, which offers rapid convergence and high classification recognition rates. The CNN-ELMNet model combines a convolutional network with an Extreme Learning Machine optimized by the SAO algorithm, which not only preserves the model's feature extraction capability but also enhances the convergence speed and classification recognition rate of the model. Experimental results on real datasets demonstrate that the proposed model exhibits strong stability, generalization, and high accuracy in fault diagnosis, achieving an accuracy rate of 99.29% and 98.75%. This provides a more feasible solution for the bearing fault diagnosis of induction motors and holds promising prospects for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研通管家采纳,获得10
1秒前
2秒前
随机科研完成签到,获得积分10
7秒前
gzy发布了新的文献求助10
7秒前
gaozengxiang完成签到,获得积分10
9秒前
完美世界应助ddd采纳,获得10
12秒前
顺心飞绿完成签到,获得积分10
13秒前
华仔应助曾经的丹彤采纳,获得10
13秒前
dm11完成签到 ,获得积分10
17秒前
23秒前
ddd发布了新的文献求助10
26秒前
苹果果汁完成签到,获得积分10
31秒前
浮游应助淑婷采纳,获得10
38秒前
qingzx完成签到 ,获得积分10
41秒前
47秒前
轻松沛菡完成签到,获得积分20
51秒前
Jzhaoc580完成签到 ,获得积分10
54秒前
嘻嘻完成签到 ,获得积分10
1分钟前
1分钟前
Hiraeth完成签到 ,获得积分10
1分钟前
十四叔发布了新的文献求助10
1分钟前
隐形曼青应助美丽的靖雁采纳,获得10
1分钟前
大方的笑萍完成签到 ,获得积分10
1分钟前
sxl完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Chnious完成签到,获得积分10
1分钟前
FashionBoy应助harrywoo采纳,获得30
1分钟前
1分钟前
犹豫梦菡完成签到 ,获得积分10
1分钟前
华仔应助一点采纳,获得10
1分钟前
1分钟前
1分钟前
泶1完成签到,获得积分10
1分钟前
lucky完成签到 ,获得积分10
1分钟前
OKC发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
foggycity完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422398
求助须知:如何正确求助?哪些是违规求助? 4537295
关于积分的说明 14157098
捐赠科研通 4453879
什么是DOI,文献DOI怎么找? 2443106
邀请新用户注册赠送积分活动 1434452
关于科研通互助平台的介绍 1411562