Strain Prediction Using Deep Learning during Solidification Crack Initiation and Growth in Laser Beam Welding of Thin Metal Sheets

卷积神经网络 焊接性 咬边 焊接 计算机科学 领域(数学) 材料科学 算法 人工智能 复合材料 数学 纯数学
作者
Wenjie Huo,Nasim Bakir,Andrey Gumenyuk,Michael Rethmeier,Katinka Wolter
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (5): 2930-2930 被引量:3
标识
DOI:10.3390/app13052930
摘要

The strain field can reflect the initiation time of solidification cracks during the welding process. The traditional strain measurement is to first obtain the displacement field through digital image correlation (DIC) or optical flow and then calculate the strain field. The main disadvantage is that the calculation takes a long time, limiting its suitability to real-time applications. Recently, convolutional neural networks (CNNs) have made impressive achievements in computer vision. To build a good prediction model, the network structure and dataset are two key factors. In this paper, we first create the training and test sets containing welding cracks using the controlled tensile weldability (CTW) test and obtain the real strain fields through the Lucas–Kanade algorithm. Then, two new networks using ResNet and DenseNet as encoders are developed for strain prediction, called StrainNetR and StrainNetD. The results show that the average endpoint error (AEE) of the two networks on our test set is about 0.04, close to the real strain value. The computation time could be reduced to the millisecond level, which would greatly improve efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱的友瑶完成签到,获得积分10
刚刚
包凡之发布了新的文献求助10
刚刚
香蕉八宝粥完成签到,获得积分10
3秒前
完美世界应助沉静乐安采纳,获得10
4秒前
蜡笔小新完成签到,获得积分10
5秒前
xqf123完成签到,获得积分10
6秒前
HIbiscusqian完成签到 ,获得积分10
6秒前
GG完成签到,获得积分10
9秒前
永不言弃完成签到 ,获得积分0
16秒前
16秒前
哈哈哈完成签到 ,获得积分10
16秒前
所所应助Return采纳,获得10
18秒前
彩虹糖应助科研通管家采纳,获得10
19秒前
汉堡包应助科研通管家采纳,获得10
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
19秒前
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
英姑应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
Mic应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
SciGPT应助踏实凡阳采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
20秒前
orixero应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
思源应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
Mic应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
深情安青应助科研通管家采纳,获得10
20秒前
思源应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
隐形曼青应助机灵的团采纳,获得10
23秒前
夜猫子完成签到,获得积分10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557689
求助须知:如何正确求助?哪些是违规求助? 4642768
关于积分的说明 14669036
捐赠科研通 4584191
什么是DOI,文献DOI怎么找? 2514668
邀请新用户注册赠送积分活动 1488870
关于科研通互助平台的介绍 1459538