WORD: A large scale dataset, benchmark and clinical applicable study for abdominal organ segmentation from CT image

分割 人工智能 计算机科学 注释 推论 水准点(测量) 深度学习 图像分割 模式识别(心理学) 像素 机器学习 地图学 地理
作者
Xiangde Luo,Wenjun Liao,Jianghong Xiao,Jieneng Chen,Tao Song,Xiaofan Zhang,Kang Li,Dimitris Metaxas,Guotai Wang,Shaoting Zhang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:82: 102642-102642 被引量:77
标识
DOI:10.1016/j.media.2022.102642
摘要

Whole abdominal organ segmentation is important in diagnosing abdomen lesions, radiotherapy, and follow-up. However, oncologists' delineating all abdominal organs from 3D volumes is time-consuming and very expensive. Deep learning-based medical image segmentation has shown the potential to reduce manual delineation efforts, but it still requires a large-scale fine annotated dataset for training, and there is a lack of large-scale datasets covering the whole abdomen region with accurate and detailed annotations for the whole abdominal organ segmentation. In this work, we establish a new large-scale Whole abdominal ORgan Dataset (WORD) for algorithm research and clinical application development. This dataset contains 150 abdominal CT volumes (30495 slices). Each volume has 16 organs with fine pixel-level annotations and scribble-based sparse annotations, which may be the largest dataset with whole abdominal organ annotation. Several state-of-the-art segmentation methods are evaluated on this dataset. And we also invited three experienced oncologists to revise the model predictions to measure the gap between the deep learning method and oncologists. Afterwards, we investigate the inference-efficient learning on the WORD, as the high-resolution image requires large GPU memory and a long inference time in the test stage. We further evaluate the scribble-based annotation-efficient learning on this dataset, as the pixel-wise manual annotation is time-consuming and expensive. The work provided a new benchmark for the abdominal multi-organ segmentation task, and these experiments can serve as the baseline for future research and clinical application development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JACK发布了新的文献求助10
刚刚
蓝胖子完成签到,获得积分10
1秒前
2秒前
菜小芽完成签到 ,获得积分10
2秒前
Liam发布了新的文献求助10
3秒前
3秒前
nczpf2010发布了新的文献求助10
4秒前
7秒前
7秒前
JACK完成签到 ,获得积分10
7秒前
7秒前
打打应助zhangluhang采纳,获得10
8秒前
hs发布了新的文献求助10
9秒前
10秒前
shunbaop完成签到,获得积分10
11秒前
11秒前
fhg发布了新的文献求助10
13秒前
慕青应助于浩洋采纳,获得10
13秒前
小迪真傻发布了新的文献求助20
14秒前
共享精神应助nczpf2010采纳,获得10
14秒前
15秒前
不吃香菜发布了新的文献求助10
15秒前
bkagyin应助cccc采纳,获得10
15秒前
星辰大海应助如风随水采纳,获得10
16秒前
自转无风完成签到,获得积分10
16秒前
英勇大神完成签到,获得积分10
16秒前
17秒前
善学以致用应助面面采纳,获得10
17秒前
黎森完成签到,获得积分20
17秒前
18秒前
niupt_lx完成签到,获得积分10
18秒前
niupt_lx发布了新的文献求助10
21秒前
22秒前
anna1992发布了新的文献求助10
22秒前
22秒前
范嘻嘻完成签到 ,获得积分10
23秒前
8R60d8应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
8R60d8应助科研通管家采纳,获得10
24秒前
8R60d8应助科研通管家采纳,获得10
24秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807053
求助须知:如何正确求助?哪些是违规求助? 3351846
关于积分的说明 10356101
捐赠科研通 3067828
什么是DOI,文献DOI怎么找? 1684762
邀请新用户注册赠送积分活动 809899
科研通“疑难数据库(出版商)”最低求助积分说明 765759