WORD: A large scale dataset, benchmark and clinical applicable study for abdominal organ segmentation from CT image

分割 人工智能 计算机科学 注释 推论 水准点(测量) 深度学习 图像分割 模式识别(心理学) 像素 机器学习 地图学 地理
作者
Xiangde Luo,Wenjun Liao,Jianghong Xiao,Jieneng Chen,Tao Song,Xiaofan Zhang,Kang Li,Dimitris Metaxas,Guotai Wang,Shaoting Zhang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:82: 102642-102642 被引量:77
标识
DOI:10.1016/j.media.2022.102642
摘要

Whole abdominal organ segmentation is important in diagnosing abdomen lesions, radiotherapy, and follow-up. However, oncologists' delineating all abdominal organs from 3D volumes is time-consuming and very expensive. Deep learning-based medical image segmentation has shown the potential to reduce manual delineation efforts, but it still requires a large-scale fine annotated dataset for training, and there is a lack of large-scale datasets covering the whole abdomen region with accurate and detailed annotations for the whole abdominal organ segmentation. In this work, we establish a new large-scale Whole abdominal ORgan Dataset (WORD) for algorithm research and clinical application development. This dataset contains 150 abdominal CT volumes (30495 slices). Each volume has 16 organs with fine pixel-level annotations and scribble-based sparse annotations, which may be the largest dataset with whole abdominal organ annotation. Several state-of-the-art segmentation methods are evaluated on this dataset. And we also invited three experienced oncologists to revise the model predictions to measure the gap between the deep learning method and oncologists. Afterwards, we investigate the inference-efficient learning on the WORD, as the high-resolution image requires large GPU memory and a long inference time in the test stage. We further evaluate the scribble-based annotation-efficient learning on this dataset, as the pixel-wise manual annotation is time-consuming and expensive. The work provided a new benchmark for the abdominal multi-organ segmentation task, and these experiments can serve as the baseline for future research and clinical application development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无心的平蝶完成签到,获得积分10
刚刚
hwezhu完成签到,获得积分10
刚刚
1秒前
怕黑剑身完成签到,获得积分10
2秒前
霸王龙完成签到,获得积分20
2秒前
仲夏完成签到,获得积分10
3秒前
唐唐完成签到,获得积分10
3秒前
3秒前
universe完成签到,获得积分10
4秒前
Yangyang完成签到,获得积分10
6秒前
脑洞疼应助Yolo采纳,获得10
6秒前
追寻羿完成签到 ,获得积分10
6秒前
7秒前
ws完成签到,获得积分10
8秒前
小鱼儿完成签到,获得积分10
9秒前
虚幻的又蓝完成签到,获得积分10
9秒前
10秒前
11秒前
合适的鼠标完成签到,获得积分20
11秒前
英俊月饼完成签到,获得积分10
11秒前
Vivian完成签到,获得积分10
12秒前
钠水得氢发布了新的文献求助10
12秒前
lyf发布了新的文献求助10
13秒前
xiaoxin完成签到,获得积分10
14秒前
Stride完成签到 ,获得积分10
15秒前
cream完成签到 ,获得积分10
15秒前
努力的学发布了新的文献求助10
15秒前
马里奥尝food完成签到,获得积分10
16秒前
伊一完成签到,获得积分10
16秒前
yidi01完成签到,获得积分10
19秒前
善良的剑通完成签到,获得积分10
19秒前
Army616完成签到,获得积分10
21秒前
钠水得氢完成签到,获得积分10
21秒前
Orange应助universe采纳,获得10
22秒前
zzx完成签到,获得积分10
23秒前
净净子完成签到 ,获得积分10
23秒前
仇凌寒完成签到,获得积分10
24秒前
坚定的海露完成签到,获得积分10
24秒前
25秒前
邹妍关注了科研通微信公众号
25秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
中国兽药产业发展报告 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
La RSE en pratique 400
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4431278
求助须知:如何正确求助?哪些是违规求助? 3907882
关于积分的说明 12139756
捐赠科研通 3553891
什么是DOI,文献DOI怎么找? 1950431
邀请新用户注册赠送积分活动 990451
科研通“疑难数据库(出版商)”最低求助积分说明 886416