Optimal Search Filters for Renal Information in EMBASE

医学 梅德林 重症监护医学 泌尿科 政治学 法学
作者
Arthur V. Iansavichus,R. Brian Haynes,Salimah Z. Shariff,Matthew A. Weir,Nancy L Wilczynski,Ann McKibbon,Faisal Rehman,Amit X. Garg
出处
期刊:American Journal of Kidney Diseases [Elsevier BV]
卷期号:56 (1): 14-22 被引量:12
标识
DOI:10.1053/j.ajkd.2009.11.026
摘要

Background EMBASE is a popular database used to retrieve biomedical information. Our objective was to develop and test search filters to help clinicians and researchers efficiently retrieve articles with renal information in EMBASE. Study Design We used a diagnostic test assessment framework because filters operate similarly to screening tests. Settings & Participants We divided a sample of 5,302 articles from 39 journals into development and validation sets of articles. Index Test Information retrieval properties were assessed by treating each search filter as a “diagnostic test” or screening procedure for the detection of relevant articles. We tested the performance of 1,936,799 search filters made of unique renal terms and their combinations. Reference Standard & Outcome The reference standard was manual review of each article. We calculated the sensitivity and specificity of each filter to identify articles with renal information. Results The best renal filters consisted of multiple search terms, such as “renal replacement therapy,” “renal,” “kidney disease,” and “proteinuria,” and the truncated terms “kidney,” “dialy,” “neph,” “glomerul,” and “hemodial.” These filters achieved peak sensitivities of 98.7% (95% CI, 97.9-99.6) and specificities of 98.5% (95% CI, 98.0-99.0). The retrieval performance of these filters remained excellent in the validation set of independent articles. Limitations The retrieval performance of any search will vary depending on the quality of all search concepts used, not just renal terms. Conclusions We empirically developed and validated high-performance renal search filters for EMBASE. These filters can be programmed into the search engine or used on their own to improve the efficiency of searching. EMBASE is a popular database used to retrieve biomedical information. Our objective was to develop and test search filters to help clinicians and researchers efficiently retrieve articles with renal information in EMBASE. We used a diagnostic test assessment framework because filters operate similarly to screening tests. We divided a sample of 5,302 articles from 39 journals into development and validation sets of articles. Information retrieval properties were assessed by treating each search filter as a “diagnostic test” or screening procedure for the detection of relevant articles. We tested the performance of 1,936,799 search filters made of unique renal terms and their combinations. The reference standard was manual review of each article. We calculated the sensitivity and specificity of each filter to identify articles with renal information. The best renal filters consisted of multiple search terms, such as “renal replacement therapy,” “renal,” “kidney disease,” and “proteinuria,” and the truncated terms “kidney,” “dialy,” “neph,” “glomerul,” and “hemodial.” These filters achieved peak sensitivities of 98.7% (95% CI, 97.9-99.6) and specificities of 98.5% (95% CI, 98.0-99.0). The retrieval performance of these filters remained excellent in the validation set of independent articles. The retrieval performance of any search will vary depending on the quality of all search concepts used, not just renal terms. We empirically developed and validated high-performance renal search filters for EMBASE. These filters can be programmed into the search engine or used on their own to improve the efficiency of searching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tysonqu完成签到,获得积分10
1秒前
数值分析完成签到 ,获得积分10
2秒前
aikanwenxian完成签到,获得积分20
2秒前
4秒前
不想洗碗完成签到 ,获得积分10
11秒前
11秒前
李佳倩完成签到 ,获得积分10
11秒前
fofo完成签到,获得积分10
16秒前
16秒前
情红锐发布了新的文献求助10
22秒前
keaid完成签到 ,获得积分10
28秒前
alan完成签到 ,获得积分10
31秒前
31秒前
chrysan完成签到,获得积分10
34秒前
小二郎应助情红锐采纳,获得30
34秒前
流沙无言完成签到 ,获得积分10
36秒前
风清扬应助科研通管家采纳,获得10
37秒前
风清扬应助科研通管家采纳,获得10
37秒前
38秒前
38秒前
38秒前
小小鱼完成签到 ,获得积分10
40秒前
呆呆是一条鱼完成签到,获得积分10
40秒前
quququ发布了新的文献求助10
43秒前
43秒前
Lucas应助猴猴猴小妞采纳,获得10
45秒前
Jeremy637完成签到 ,获得积分10
46秒前
52秒前
keen完成签到 ,获得积分10
53秒前
HuLL完成签到 ,获得积分10
53秒前
单身的紊完成签到,获得积分10
54秒前
zhangliangfu完成签到 ,获得积分10
54秒前
Michael_li完成签到,获得积分10
55秒前
子非鱼完成签到 ,获得积分10
57秒前
相南相北完成签到 ,获得积分10
59秒前
醉生梦死完成签到 ,获得积分10
1分钟前
芝诺的乌龟完成签到 ,获得积分0
1分钟前
zpzz完成签到 ,获得积分10
1分钟前
彪壮的双双完成签到,获得积分20
1分钟前
愉快数据线完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4001439
求助须知:如何正确求助?哪些是违规求助? 3540831
关于积分的说明 11278749
捐赠科研通 3278725
什么是DOI,文献DOI怎么找? 1808174
邀请新用户注册赠送积分活动 884376
科研通“疑难数据库(出版商)”最低求助积分说明 810291