Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

细胞自动机 计算机科学 模糊逻辑 城市规划 过程(计算) 地理空间分析 人工智能 地理 工程类 土木工程 遥感 操作系统
作者
Yousef Khajavigodellou,Ali Asghar Alesheikh,Abdulrazak A. Mohammed,Kamran Chapi
出处
期刊:Proceedings of SPIE 卷期号:9219: 921909-921909 被引量:1
标识
DOI:10.1117/12.2063097
摘要

Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助明天会更美好采纳,获得10
2秒前
3秒前
斯文败类应助chemhub采纳,获得10
4秒前
可爱的函函应助科研民工采纳,获得10
4秒前
李健的小迷弟应助芽衣采纳,获得10
7秒前
9秒前
11秒前
cinyadane完成签到 ,获得积分10
14秒前
14秒前
小五屁孩儿完成签到,获得积分10
16秒前
顾矜应助蔡继海采纳,获得10
17秒前
pazuzu发布了新的文献求助10
17秒前
科研小王完成签到,获得积分10
18秒前
22秒前
23秒前
23秒前
开始完成签到,获得积分10
24秒前
25秒前
26秒前
科研民工发布了新的文献求助10
26秒前
chemhub发布了新的文献求助10
27秒前
cdercder应助芽衣采纳,获得10
27秒前
iNk应助科研通管家采纳,获得20
28秒前
情怀应助科研通管家采纳,获得10
28秒前
领导范儿应助科研通管家采纳,获得10
28秒前
我是老大应助科研通管家采纳,获得10
28秒前
CipherSage应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
小刘应助科研通管家采纳,获得10
28秒前
一一应助科研通管家采纳,获得10
28秒前
科研通AI5应助科研通管家采纳,获得10
28秒前
一一应助科研通管家采纳,获得10
28秒前
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
科研通AI5应助科研通管家采纳,获得10
29秒前
29秒前
赘婿应助科研通管家采纳,获得10
29秒前
天天快乐应助科研通管家采纳,获得10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976