Training and operation of an integrated neuromorphic network based on metal-oxide memristors

记忆电阻器 神经形态工程学 横杆开关 计算机科学 晶体管 集成电路 CMOS芯片 人工神经网络 电子线路 电子工程 电阻随机存取存储器 电气工程 电压 人工智能 工程类 电信 操作系统
作者
M. Prezioso,Farshad Merrikh‐Bayat,Brian D. Hoskins,Gina C. Adam,Konstantin K. Likharev,Dmitri B. Strukov
出处
期刊:Nature [Springer Nature]
卷期号:521 (7550): 61-64 被引量:2791
标识
DOI:10.1038/nature14441
摘要

A transistor-free metal-oxide memristor crossbar with low device variability is realised and trained to perform a simple classification task, opening the way to integrated neuromorphic networks of a complexity comparable to that of the human brain, with high operational speed and manageable power dissipation. Building neuromorphic networks matching the cognitive complexity of their biological prototypes but with higher performance is one of the great challenges in computing. One promising approach to such devices — potentially simpler than those based on complex silicon circuits — combines complementary metal-oxide-semiconductors (CMOSs) with adjustable two-terminal resistive devices (memristors). Here Dmitri Strukov and colleagues demonstrate a transistor-free metal-oxide memristor network with low device variability that works as a single-layer perceptron. That is, it can learn to recognize imperfect 3 × 3 pixel black-and-white patterns as one of three letters of the alphabet. The strength of this approach is its scalability so that larger neuromorphic networks capable of more challenging tasks should be possible. Despite much progress in semiconductor integrated circuit technology, the extreme complexity of the human cerebral cortex1, with its approximately 1014 synapses, makes the hardware implementation of neuromorphic networks with a comparable number of devices exceptionally challenging. To provide comparable complexity while operating much faster and with manageable power dissipation, networks2 based on circuits3,4 combining complementary metal-oxide-semiconductors (CMOSs) and adjustable two-terminal resistive devices (memristors) have been developed. In such circuits, the usual CMOS stack is augmented with one3 or several4 crossbar layers, with memristors at each crosspoint. There have recently been notable improvements in the fabrication of such memristive crossbars and their integration with CMOS circuits5,6,7,8,9,10,11,12, including first demonstrations5,6,12 of their vertical integration. Separately, discrete memristors have been used as artificial synapses in neuromorphic networks13,14,15,16,17,18. Very recently, such experiments have been extended19 to crossbar arrays of phase-change memristive devices. The adjustment of such devices, however, requires an additional transistor at each crosspoint, and hence these devices are much harder to scale than metal-oxide memristors11,20,21, whose nonlinear current–voltage curves enable transistor-free operation. Here we report the experimental implementation of transistor-free metal-oxide memristor crossbars, with device variability sufficiently low to allow operation of integrated neural networks, in a simple network: a single-layer perceptron (an algorithm for linear classification). The network can be taught in situ using a coarse-grain variety of the delta rule algorithm22 to perform the perfect classification of 3 × 3-pixel black/white images into three classes (representing letters). This demonstration is an important step towards much larger and more complex memristive neuromorphic networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快数据线完成签到 ,获得积分10
刚刚
陌路完成签到,获得积分10
刚刚
自觉柠檬完成签到 ,获得积分10
1秒前
liuxinyang完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
畅快海云完成签到 ,获得积分10
2秒前
lucky发布了新的文献求助10
3秒前
3秒前
4秒前
12345完成签到,获得积分10
4秒前
173678完成签到,获得积分10
4秒前
zhangxf608完成签到,获得积分10
4秒前
Peter应助Maestro_S采纳,获得50
4秒前
快乐非笑完成签到,获得积分10
5秒前
5秒前
卫三发布了新的文献求助10
5秒前
小天发布了新的文献求助50
5秒前
量子星尘发布了新的文献求助10
6秒前
yuyuyu发布了新的文献求助10
6秒前
爆米花应助檀秀婷采纳,获得10
7秒前
zhong完成签到,获得积分10
7秒前
holder完成签到,获得积分10
7秒前
夏傥发布了新的文献求助10
7秒前
shhoing应助猪猪hero采纳,获得10
8秒前
小青椒应助冷知识采纳,获得30
9秒前
辛勤安梦完成签到,获得积分10
9秒前
天才小仙女完成签到,获得积分10
9秒前
Winnie完成签到,获得积分10
9秒前
夕阳刀客完成签到,获得积分10
9秒前
lei发布了新的文献求助10
10秒前
万能图书馆应助wen采纳,获得10
10秒前
10秒前
hjz发布了新的文献求助10
10秒前
华仔应助Fyl采纳,获得10
11秒前
深情安青应助霸霸采纳,获得10
12秒前
徐超完成签到,获得积分10
13秒前
科研通AI6应助化学喵采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5544314
求助须知:如何正确求助?哪些是违规求助? 4630062
关于积分的说明 14614390
捐赠科研通 4571713
什么是DOI,文献DOI怎么找? 2506476
邀请新用户注册赠送积分活动 1483481
关于科研通互助平台的介绍 1455066