已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Training and operation of an integrated neuromorphic network based on metal-oxide memristors

记忆电阻器 神经形态工程学 横杆开关 计算机科学 晶体管 集成电路 CMOS芯片 人工神经网络 电子线路 电子工程 电阻随机存取存储器 电气工程 电压 人工智能 工程类 电信 操作系统
作者
M. Prezioso,Farshad Merrikh‐Bayat,Brian D. Hoskins,Gina C. Adam,Konstantin K. Likharev,Dmitri B. Strukov
出处
期刊:Nature [Nature Portfolio]
卷期号:521 (7550): 61-64 被引量:2592
标识
DOI:10.1038/nature14441
摘要

A transistor-free metal-oxide memristor crossbar with low device variability is realised and trained to perform a simple classification task, opening the way to integrated neuromorphic networks of a complexity comparable to that of the human brain, with high operational speed and manageable power dissipation. Building neuromorphic networks matching the cognitive complexity of their biological prototypes but with higher performance is one of the great challenges in computing. One promising approach to such devices — potentially simpler than those based on complex silicon circuits — combines complementary metal-oxide-semiconductors (CMOSs) with adjustable two-terminal resistive devices (memristors). Here Dmitri Strukov and colleagues demonstrate a transistor-free metal-oxide memristor network with low device variability that works as a single-layer perceptron. That is, it can learn to recognize imperfect 3 × 3 pixel black-and-white patterns as one of three letters of the alphabet. The strength of this approach is its scalability so that larger neuromorphic networks capable of more challenging tasks should be possible. Despite much progress in semiconductor integrated circuit technology, the extreme complexity of the human cerebral cortex1, with its approximately 1014 synapses, makes the hardware implementation of neuromorphic networks with a comparable number of devices exceptionally challenging. To provide comparable complexity while operating much faster and with manageable power dissipation, networks2 based on circuits3,4 combining complementary metal-oxide-semiconductors (CMOSs) and adjustable two-terminal resistive devices (memristors) have been developed. In such circuits, the usual CMOS stack is augmented with one3 or several4 crossbar layers, with memristors at each crosspoint. There have recently been notable improvements in the fabrication of such memristive crossbars and their integration with CMOS circuits5,6,7,8,9,10,11,12, including first demonstrations5,6,12 of their vertical integration. Separately, discrete memristors have been used as artificial synapses in neuromorphic networks13,14,15,16,17,18. Very recently, such experiments have been extended19 to crossbar arrays of phase-change memristive devices. The adjustment of such devices, however, requires an additional transistor at each crosspoint, and hence these devices are much harder to scale than metal-oxide memristors11,20,21, whose nonlinear current–voltage curves enable transistor-free operation. Here we report the experimental implementation of transistor-free metal-oxide memristor crossbars, with device variability sufficiently low to allow operation of integrated neural networks, in a simple network: a single-layer perceptron (an algorithm for linear classification). The network can be taught in situ using a coarse-grain variety of the delta rule algorithm22 to perform the perfect classification of 3 × 3-pixel black/white images into three classes (representing letters). This demonstration is an important step towards much larger and more complex memristive neuromorphic networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助舒适路人采纳,获得10
1秒前
无芒发布了新的文献求助20
2秒前
执着卿完成签到,获得积分10
3秒前
auraro完成签到 ,获得积分10
3秒前
3秒前
华仔应助li采纳,获得10
4秒前
6秒前
10秒前
梦_筱彩完成签到 ,获得积分10
11秒前
会飞的猪发布了新的文献求助10
13秒前
大模型应助舒适路人采纳,获得10
13秒前
qt发布了新的文献求助10
16秒前
科研通AI2S应助妮妮采纳,获得10
18秒前
李健应助BinYan采纳,获得10
19秒前
黑色精灵完成签到,获得积分10
20秒前
李雷完成签到 ,获得积分10
20秒前
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
科目三应助gdh采纳,获得10
22秒前
qiao应助Bella采纳,获得10
24秒前
parzival完成签到 ,获得积分10
24秒前
silk完成签到,获得积分10
27秒前
会飞的猪完成签到,获得积分10
27秒前
斯文败类应助舒适路人采纳,获得10
27秒前
小宋关注了科研通微信公众号
29秒前
31秒前
33秒前
HongXiang Li完成签到 ,获得积分10
35秒前
华仔应助zzz采纳,获得10
37秒前
gdh发布了新的文献求助10
37秒前
Bella完成签到,获得积分10
39秒前
酷炫中蓝完成签到 ,获得积分10
40秒前
Jasper应助墨白白采纳,获得10
40秒前
42秒前
1111chen完成签到 ,获得积分10
42秒前
44秒前
可爱的函函应助舒适路人采纳,获得10
45秒前
三角形完成签到,获得积分10
45秒前
陌小千完成签到 ,获得积分10
47秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784615
求助须知:如何正确求助?哪些是违规求助? 3329736
关于积分的说明 10243308
捐赠科研通 3045037
什么是DOI,文献DOI怎么找? 1671592
邀请新用户注册赠送积分活动 800458
科研通“疑难数据库(出版商)”最低求助积分说明 759391