Identification of COPD From Multi-View Snapshots of 3D Lung Airway Tree via Deep CNN

判别式 卷积神经网络 计算机科学 人工智能 模式识别(心理学) 慢性阻塞性肺病 深度学习 随机森林 树(集合论) 计算机视觉 医学 数学 内科学 数学分析
作者
Ran Du,Shouliang Qi,Jie Feng,Shuyue Xia,Yan Kang,Wei Qian,Yudong Yao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 38907-38919 被引量:51
标识
DOI:10.1109/access.2020.2974617
摘要

Chronic obstructive pulmonary disease (COPD) is associated with morphologic abnormalities of airways with various patterns and severities. However, the way of effectively representing these abnormalities is lacking and whether these abnormalities enable to distinguish COPD from healthy controls is unknown. We propose to use deep convolutional neural network (CNN) to assess 3D lung airway tree from the perspective of computer vision, thereby constructing models of identifying COPD. After extracting airway trees from CT images, snapshots of their 3D visualizations are obtained from ventral, dorsal and isometric views. Using snapshots of each view, one deep CNN model is constructed and further optimized by Bayesian optimization algorithm to indentify COPD. The majority voting of three views presents the final prediction. Finally, the class-discriminative localization maps have been drawn to visually explain the CNNs' decisions. The models trained with single view (ventral, dorsal and isometric) of colorful snapshots present the similar accuracy (ACC) (86.8%, 87.5% and 86.7%) and the model after voting achieves the ACC of 88.2%. The ACC of the final voting model using gray and binary snapshots achieves 88.6% and 86.4%, respectively. Our specially designed CNNs outperform the typical off-the-shelf CNNs and the pre-trained CNNs with fine tuning. The class-discriminative regions of COPD are mainly located at central airways; however, regions in HC are scattering and located at peripheral airways. It is feasible to identify COPD using snapshots of 3D lung airway tree extracted from CT images via deep CNN. The CNNs can represent the abnormalities of airway tree in COPD and make accurate CT-based diagnosis of COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阮人雄发布了新的文献求助10
3秒前
英俊的铭应助qiulong采纳,获得10
5秒前
CaoRouLi完成签到,获得积分10
6秒前
大模型应助阮人雄采纳,获得10
7秒前
瘪良科研完成签到,获得积分10
10秒前
cjw完成签到 ,获得积分10
11秒前
12秒前
13秒前
花花完成签到,获得积分10
15秒前
15秒前
小杨发布了新的文献求助10
18秒前
sophia完成签到 ,获得积分10
21秒前
21秒前
SC完成签到,获得积分10
21秒前
科研小废物完成签到,获得积分10
21秒前
JHGG应助Star采纳,获得30
25秒前
kkkkkk发布了新的文献求助10
26秒前
aprise完成签到 ,获得积分10
29秒前
hyp7347关注了科研通微信公众号
29秒前
bkagyin应助小杨采纳,获得10
31秒前
语物完成签到,获得积分10
31秒前
具体问题具体分析完成签到 ,获得积分10
32秒前
adam完成签到,获得积分10
32秒前
111发布了新的文献求助20
33秒前
科目三应助科研通管家采纳,获得10
33秒前
33秒前
cdercder应助科研通管家采纳,获得20
33秒前
cdercder应助科研通管家采纳,获得20
33秒前
33秒前
传奇3应助科研通管家采纳,获得10
33秒前
天天快乐应助科研通管家采纳,获得10
33秒前
Young完成签到,获得积分10
33秒前
彭于晏应助科研通管家采纳,获得10
33秒前
Akim应助科研通管家采纳,获得10
33秒前
星辰大海应助科研通管家采纳,获得10
33秒前
33秒前
冷傲以珊完成签到,获得积分10
35秒前
小纯牛奶发布了新的文献求助10
38秒前
科研通AI5应助俭朴的期待采纳,获得10
38秒前
王波完成签到 ,获得积分10
38秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799165
求助须知:如何正确求助?哪些是违规求助? 3344871
关于积分的说明 10321911
捐赠科研通 3061287
什么是DOI,文献DOI怎么找? 1680191
邀请新用户注册赠送积分活动 806919
科研通“疑难数据库(出版商)”最低求助积分说明 763445