Unsupervised deep learning approach using a deep auto-encoder with a one-class support vector machine to detect damage

自编码 深度学习 人工智能 计算机科学 支持向量机 模式识别(心理学) 编码器 加速度 无监督学习 机器学习 人工神经网络 经典力学 操作系统 物理
作者
Zilong Wang,Young‐Jin Cha
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:20 (1): 406-425 被引量:227
标识
DOI:10.1177/1475921720934051
摘要

This article proposes an unsupervised deep learning–based approach to detect structural damage. Supervised deep learning methods have been proposed in recent years, but they require data from an intact structure and various damage scenarios of monitored structures for their training processes. However, the labeling work on the training data is typically time-consuming and costly, and sometimes collecting sufficient training data from various damage scenarios of infrastructures in service is impractical. In this article, the proposed unsupervised deep learning method based on a deep auto-encoder with an one-class support vector machine only uses the measured acceleration response data acquired from intact or baseline structures as training data, which enables future structural damage to be detected. The major contributions and novelties of the proposed method are as follows. First, an appropriate deep auto-encoder is carefully designed through comparative studies on the depth of neural networks. Second, the designed deep auto-encoder is taken as an extractor to obtain damage-sensitive features from the measured acceleration response data, and an one-class support vector machine is used as a damage detector. Third, experimental and numerical studies validate the high accuracy of the proposed method for damage detection: a 97.4% mean average for a 12-story numerical building model and a 91.0% accuracy for a laboratory-scaled steel bridge. Fourth, the proposed method also detects light damage (i.e. a 10% reduction in stiffness) with 96.9% to 99.0% accuracy, which shows its superior performance compared with the current state of the art. Fifth, it provides stable and more robust damage detection performance with reduced tuning parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助Summeryz920采纳,获得10
1秒前
科研小虫完成签到,获得积分10
3秒前
田様应助微醺小王采纳,获得10
4秒前
Summeryz920发布了新的文献求助10
5秒前
典雅问寒应助辛勤迎彤采纳,获得10
5秒前
溶胶发布了新的文献求助10
6秒前
钢铁加鲁鲁完成签到,获得积分0
8秒前
科研通AI5应助纯真的笑容采纳,获得10
9秒前
赘婿应助甜甜从阳采纳,获得10
10秒前
12秒前
华仔应助小樊同学采纳,获得10
13秒前
在水一方应助火星天采纳,获得10
14秒前
细腻问柳完成签到,获得积分10
15秒前
零点零壹应助slj采纳,获得10
15秒前
Doin完成签到 ,获得积分10
17秒前
微醺小王发布了新的文献求助10
17秒前
小透明发布了新的文献求助10
17秒前
18秒前
冰魂应助aa采纳,获得20
19秒前
19秒前
19秒前
JamesPei应助溶胶采纳,获得10
20秒前
陶世立完成签到 ,获得积分10
22秒前
粱踏歌发布了新的文献求助10
22秒前
23秒前
24秒前
甜甜从阳发布了新的文献求助10
25秒前
周同学完成签到 ,获得积分10
26秒前
小二郎应助安屿采纳,获得10
26秒前
27秒前
火星天发布了新的文献求助10
29秒前
郭宇发布了新的文献求助10
29秒前
华仔应助19558991211采纳,获得10
32秒前
cooper发布了新的文献求助10
33秒前
Leo完成签到,获得积分10
33秒前
科研通AI5应助郭宇采纳,获得10
34秒前
小W完成签到 ,获得积分10
35秒前
田様应助火星天采纳,获得10
35秒前
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322186
关于积分的说明 10209239
捐赠科研通 3037436
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757959