三苯胺
吸收(声学)
荧光
密度泛函理论
激光器
分子
材料科学
光化学
双光子吸收
化学
光电子学
光学
计算化学
有机化学
物理
复合材料
作者
Yu Gong,Gao‐Lei Hou,Xiangdong Bi,Narayanan Kuthirummal,Alem Teklu,Jacob Koenemann,Nico Harris,Peng Wei,Krystal Devera,Ming Hu
标识
DOI:10.1021/acs.jpca.0c10567
摘要
Two-photon absorption (TPA) enables the excitation of molecules by comparatively lower energy photons with longer penetration depth and higher spatial precision control, which advances the uses of organic molecules in various applications. In this work, we report two simple all-organic molecules C42H33N (compound 3) and C138H168N4 (compound 14) with strong TPA and fluorescent emission activity. Density functional theory calculations show that the enhanced oscillator strengths could be responsible for improved TPA and emission activity for compound 14 compared to those for 3. The degradation of C138H168N4 under focused laser illumination without circulation is almost negligible within 5 h, making it a candidate for laser dyes. Solid-state measurements confirm the presence of a direct band gap for electron transition that determines the channel to release the absorbed energy and functionality of the studied molecules. This work emphasizes that a high TPA cross-section and selectable energy relaxation (fluorescent emission or heat dissipation) are equally important to the design of advanced functional TPA molecules.
科研通智能强力驱动
Strongly Powered by AbleSci AI