Tetrahydrobioterin (BH4) Pathway: From Metabolism to Neuropsychiatry

氧化应激 四氢生物蝶呤 一氧化氮 单胺类 医学 炎症 一氧化氮合酶 药理学 生物化学 化学 内分泌学 内科学 血清素 受体
作者
Hortense Fanet,Lucile Capuron,Nathalie Castanon,Frédéric Calon,Sylvie Vancassel
出处
期刊:Current Neuropharmacology [Bentham Science Publishers]
卷期号:19 (5): 591-609 被引量:88
标识
DOI:10.2174/1570159x18666200729103529
摘要

Tetrahydrobipterin (BH4) is a pivotal enzymatic cofactor required for the synthesis of serotonin, dopamine and nitric oxide. BH4 is essential for numerous physiological processes at periphery and central levels, such as vascularization, inflammation, glucose homeostasis, regulation of oxidative stress and neurotransmission. BH4 de novo synthesis involves the sequential activation of three enzymes, the major controlling point being GTP cyclohydrolase I (GCH1). Complementary salvage and recycling pathways ensure that BH4 levels are tightly kept within a physiological range in the body. Even if the way of transport of BH4 and its ability to enter the brain after peripheral administration is still controversial, data showed increased levels in the brain after BH4 treatment. Available evidence shows that GCH1 expression and BH4 synthesis are stimulated by immunological factors, notably pro-inflammatory cytokines. Once produced, BH4 can act as an anti- inflammatory molecule and scavenger of free radicals protecting against oxidative stress. At the same time, BH4 is prone to autoxidation, leading to the release of superoxide radicals contributing to inflammatory processes, and to the production of BH2, an inactive form of BH4, reducing its bioavailability. Alterations in BH4 levels have been documented in many pathological situations, including Alzheimer's disease, Parkinson's disease and depression, in which increased oxidative stress, inflammation and alterations in monoaminergic function are described. This review aims at providing an update of the knowledge about metabolism and the role of BH4 in brain function, from preclinical to clinical studies, addressing some therapeutic implications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
宋呵呵完成签到,获得积分10
2秒前
3秒前
to高坚果发布了新的文献求助10
4秒前
伶俐灵发布了新的文献求助10
5秒前
6秒前
7秒前
高明完成签到,获得积分10
7秒前
7秒前
Salut发布了新的文献求助10
8秒前
小马哥完成签到,获得积分10
10秒前
10秒前
852应助材料摆渡人采纳,获得10
10秒前
11秒前
伶俐灵完成签到,获得积分10
12秒前
12秒前
Unstoppable发布了新的文献求助10
14秒前
14秒前
15秒前
明芬发布了新的文献求助10
16秒前
HHH关注了科研通微信公众号
16秒前
18秒前
丘比特应助躺平的搬砖人采纳,获得10
18秒前
18秒前
19秒前
20秒前
Ori发布了新的文献求助10
21秒前
21秒前
22秒前
uncleroot发布了新的文献求助10
23秒前
马凤仪发布了新的文献求助10
24秒前
24秒前
大模型应助开心人达采纳,获得10
25秒前
25秒前
25秒前
Fighting发布了新的文献求助10
26秒前
害羞的雁易完成签到 ,获得积分10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4750548
求助须知:如何正确求助?哪些是违规求助? 4096580
关于积分的说明 12674367
捐赠科研通 3809012
什么是DOI,文献DOI怎么找? 2102894
邀请新用户注册赠送积分活动 1128167
关于科研通互助平台的介绍 1004882