Comparison of the Tree-Based Machine Learning Algorithms to Cox Regression in Predicting the Survival of Oral and Pharyngeal Cancers: Analyses Based on SEER Database

医学 递归分区 癌症 肿瘤科 内科学 逻辑回归 决策树 树(集合论) 回归 生存分析 支持向量机 计算机科学
作者
Mi Du,Dandara Haag,John Lynch,Murthy Mittinty
出处
期刊:Cancers [Multidisciplinary Digital Publishing Institute]
卷期号:12 (10): 2802-2802 被引量:32
标识
DOI:10.3390/cancers12102802
摘要

This study aims to demonstrate the use of the tree-based machine learning algorithms to predict the 3- and 5-year disease-specific survival of oral and pharyngeal cancers (OPCs) and compare their performance with the traditional Cox regression. A total of 21,154 individuals diagnosed with OPCs between 2004 and 2009 were obtained from the Surveillance, Epidemiology, and End Results (SEER) database. Three tree-based machine learning algorithms (survival tree (ST), random forest (RF) and conditional inference forest (CF)), together with a reference technique (Cox proportional hazard models (Cox)), were used to develop the survival prediction models. To handle the missing values in predictors, we applied the substantive model compatible version of the fully conditional specification imputation approach to the Cox model, whereas we used RF to impute missing data for the ST, RF and CF models. For internal validation, we used 10-fold cross-validation with 50 iterations in the model development datasets. Following this, model performance was evaluated using the C-index, integrated Brier score (IBS) and calibration curves in the test datasets. For predicting the 3-year survival of OPCs with the complete cases, the C-index in the development sets were 0.77 (0.77, 0.77), 0.70 (0.70, 0.70), 0.83 (0.83, 0.84) and 0.83 (0.83, 0.86) for Cox, ST, RF and CF, respectively. Similar results were observed in the 5-year survival prediction models, with C-index for Cox, ST, RF and CF being 0.76 (0.76, 0.76), 0.69 (0.69, 0.70), 0.83 (0.83, 0.83) and 0.85 (0.84, 0.86), respectively, in development datasets. The prediction error curves based on IBS showed a similar pattern for these models. The predictive performance remained unchanged in the analyses with imputed data. Additionally, a free web-based calculator was developed for potential clinical use. In conclusion, compared to Cox regression, ST had a lower and RF and CF had a higher predictive accuracy in predicting the 3- and 5-year OPCs survival using SEER data. The RF and CF algorithms provide non-parametric alternatives to Cox regression to be of clinical use for estimating the survival probability of OPCs patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyyyyyyyy发布了新的文献求助10
1秒前
害怕的慕晴完成签到 ,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
明亮皮卡丘完成签到,获得积分10
3秒前
3秒前
斯文败类应助迟山采纳,获得10
5秒前
6秒前
不爱吃饭发布了新的文献求助10
6秒前
7anWing发布了新的文献求助10
7秒前
7秒前
llemonm发布了新的文献求助10
8秒前
朴实傲霜发布了新的文献求助10
9秒前
10秒前
Liua发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
CH11发布了新的文献求助10
14秒前
shanshanerchuan完成签到 ,获得积分10
15秒前
四文鱼发布了新的文献求助10
15秒前
赘婿应助不爱吃饭采纳,获得10
15秒前
16秒前
18秒前
朴实傲霜完成签到,获得积分10
20秒前
充电宝应助7anWing采纳,获得10
20秒前
111完成签到,获得积分10
21秒前
22秒前
打打应助YXYWZMSZ采纳,获得10
23秒前
xgx984发布了新的文献求助10
23秒前
24秒前
llemonm发布了新的文献求助10
28秒前
29秒前
量子星尘发布了新的文献求助10
32秒前
CH11完成签到,获得积分10
32秒前
戚薇发布了新的文献求助10
34秒前
久而久之发布了新的文献求助10
36秒前
CodeCraft应助戚薇采纳,获得10
41秒前
41秒前
顺利的琳应助LANER采纳,获得30
42秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Materials Selection in Mechanical Design 5000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4312649
求助须知:如何正确求助?哪些是违规求助? 3832873
关于积分的说明 11991741
捐赠科研通 3472932
什么是DOI,文献DOI怎么找? 1904340
邀请新用户注册赠送积分活动 951200
科研通“疑难数据库(出版商)”最低求助积分说明 852865