The development of autonomous navigation and obstacle avoidance for a robotic mower using machine vision technique

全球导航卫星系统应用 障碍物 计算机科学 人工智能 计算机视觉 信号(编程语言) 实时计算 实时动态 卫星系统 卷积神经网络 传感器融合 全球定位系统 电信 地理 考古 程序设计语言
作者
Kosuke Inoue,Yutaka Kaizu,Sho Igarashi,Kenji Imou
出处
期刊:IFAC-PapersOnLine [Elsevier BV]
卷期号:52 (30): 173-177 被引量:46
标识
DOI:10.1016/j.ifacol.2019.12.517
摘要

The autonomous driving of agricultural machinery using information from global navigation satellite system (GNSS) information has developed rapidly because it is considered as a labor-saving measure in agriculture. The agricultural machinery is able to locate its position using a GNSS signal allowing it to move in an area autonomously. However, if machinery uses the GNSS signal only to self-locate it may run the risk of colliding with obstacles as it may not accurately sense the surrounding environment. Furthermore, sensors such as radars or lasers cannot distinguish between grass and obstacles; hence they cannot be used for sensing an agricultural environment including the detection of obstacles that are likely to be encountered by the machinery. Autonomous driving cannot be performed in environments such as orchards where the satellite positioning accuracy is low. This paper presents an autonomous driving system that we developed that is able to avoid obstacles and drive without the aid of a GNSS signal. The system uses an object detection system that is based on a stereo camera and deep learning technique i.e. convolutional neural networks as they can be used to recognize an environment and avoid obstacles. The autonomous driving ability of the vehicle was evaluated using real-time kinematic-GNSS to measure the true values through experiments that were conducted in the Tanashi Forest of the University of Tokyo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级盼烟发布了新的文献求助10
刚刚
1秒前
登登完成签到,获得积分10
1秒前
上上签完成签到,获得积分10
2秒前
研友_Zeq7gZ完成签到,获得积分20
3秒前
务实的绝悟完成签到,获得积分10
3秒前
3秒前
可爱的小树苗完成签到,获得积分10
3秒前
waitstill完成签到,获得积分10
4秒前
小飞完成签到,获得积分10
4秒前
满意的跳跳糖完成签到 ,获得积分10
4秒前
fan完成签到,获得积分10
5秒前
超级盼烟完成签到,获得积分10
5秒前
yaowenjun完成签到,获得积分10
5秒前
南遇完成签到,获得积分10
6秒前
Mylong发布了新的文献求助10
7秒前
dd33完成签到,获得积分10
7秒前
Amorphous完成签到,获得积分10
7秒前
Fury完成签到 ,获得积分10
7秒前
激昂的君浩完成签到,获得积分10
7秒前
我爱科研完成签到 ,获得积分10
8秒前
LVVVB完成签到,获得积分10
8秒前
betyby完成签到 ,获得积分10
9秒前
Yoo完成签到,获得积分10
10秒前
整齐醉冬完成签到,获得积分10
10秒前
Graham完成签到,获得积分10
10秒前
闫栋完成签到 ,获得积分10
10秒前
小苏完成签到 ,获得积分10
11秒前
12秒前
欣喜电脑应助小曲采纳,获得10
13秒前
天马行空完成签到,获得积分10
13秒前
成就的钢笔完成签到 ,获得积分20
13秒前
14秒前
15秒前
西哥完成签到,获得积分10
15秒前
Tohka完成签到 ,获得积分10
16秒前
Setlla完成签到 ,获得积分10
16秒前
mufcyang发布了新的文献求助10
16秒前
JC完成签到,获得积分10
17秒前
echo完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4570943
求助须知:如何正确求助?哪些是违规求助? 3992327
关于积分的说明 12357387
捐赠科研通 3665133
什么是DOI,文献DOI怎么找? 2019936
邀请新用户注册赠送积分活动 1054342
科研通“疑难数据库(出版商)”最低求助积分说明 941891