人工智能
像素
计算机科学
傅里叶变换
模式识别(心理学)
计算机视觉
图像分辨率
物理
光学
图像(数学)
稳健性(进化)
图像处理
数学
基因
数学分析
生物化学
化学
作者
Santosh Kumar,Ting Bu,He Zhang,Irwin Huang,Yu‐Ping Huang
出处
期刊:Optics Letters
[Optica Publishing Group]
日期:2021-03-16
卷期号:46 (8): 1848-1848
被引量:14
摘要
We present a hybrid image classifier by mode-selective image upconversion, single pixel photodetection, and deep learning, aiming at fast processing a large number of pixels. It utilizes partial Fourier transform to extract the signature features of images in both the original and Fourier domains, thereby significantly increasing the classification accuracy and robustness. Tested on the MNIST handwritten digit images, it boosts the accuracy from 81.25% to 99.23%, and achieves an 83% accuracy for highly contaminated images whose signal-to-noise ratio is only -17 dB. Our approach could prove useful for fast lidar data processing, high resolution image recognition, occluded target identification, atmosphere monitoring, and so on.
科研通智能强力驱动
Strongly Powered by AbleSci AI