Predicting and Mapping of Soil Organic Carbon Using Machine Learning Algorithms in Northern Iran

随机森林 均方误差 土壤碳 支持向量机 相关系数 人工神经网络 算法 特征选择 土壤科学 环境科学 人工智能 土壤水分 数学 机器学习 计算机科学 统计
作者
Mostafa Emadi,Ruhollah Taghizadeh‐Mehrjardi,Ali Cherati,Majid Danesh,Amir Mosavi,Thomas Scholten
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:12 (14): 2234-2234 被引量:230
标识
DOI:10.3390/rs12142234
摘要

Estimation of the soil organic carbon (SOC) content is of utmost importance in understanding the chemical, physical, and biological functions of the soil. This study proposes machine learning algorithms of support vector machines (SVM), artificial neural networks (ANN), regression tree, random forest (RF), extreme gradient boosting (XGBoost), and conventional deep neural network (DNN) for advancing prediction models of SOC. Models are trained with 1879 composite surface soil samples, and 105 auxiliary data as predictors. The genetic algorithm is used as a feature selection approach to identify effective variables. The results indicate that precipitation is the most important predictor driving 14.9% of SOC spatial variability followed by the normalized difference vegetation index (12.5%), day temperature index of moderate resolution imaging spectroradiometer (10.6%), multiresolution valley bottom flatness (8.7%) and land use (8.2%), respectively. Based on 10-fold cross-validation, the DNN model reported as a superior algorithm with the lowest prediction error and uncertainty. In terms of accuracy, DNN yielded a mean absolute error of 0.59%, a root mean squared error of 0.75%, a coefficient of determination of 0.65, and Lin’s concordance correlation coefficient of 0.83. The SOC content was the highest in udic soil moisture regime class with mean values of 3.71%, followed by the aquic (2.45%) and xeric (2.10%) classes, respectively. Soils in dense forestlands had the highest SOC contents, whereas soils of younger geological age and alluvial fans had lower SOC. The proposed DNN (hidden layers = 7, and size = 50) is a promising algorithm for handling large numbers of auxiliary data at a province-scale, and due to its flexible structure and the ability to extract more information from the auxiliary data surrounding the sampled observations, it had high accuracy for the prediction of the SOC base-line map and minimal uncertainty.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
秋实完成签到,获得积分10
1秒前
1秒前
现代完成签到,获得积分10
2秒前
Allen发布了新的文献求助10
3秒前
3秒前
Kinesin发布了新的文献求助10
4秒前
三千港完成签到,获得积分10
5秒前
之鱼之乐完成签到,获得积分10
5秒前
乐乐应助Vi采纳,获得100
6秒前
聪明摩托完成签到,获得积分10
6秒前
_ban完成签到 ,获得积分10
7秒前
852应助皮崇知采纳,获得10
7秒前
酷炫的幻丝完成签到 ,获得积分10
7秒前
科研通AI2S应助孙兆杰采纳,获得10
8秒前
丘比特应助大瓶子采纳,获得30
8秒前
9秒前
10秒前
粗暴的外套完成签到,获得积分10
11秒前
Allen完成签到,获得积分10
11秒前
皮崇知完成签到,获得积分10
11秒前
结实健柏完成签到,获得积分20
12秒前
12秒前
houfei发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
aaiirrii完成签到,获得积分10
14秒前
hyju发布了新的文献求助10
14秒前
15秒前
苏东方完成签到,获得积分10
15秒前
graaaace发布了新的文献求助10
16秒前
陈永伟发布了新的文献求助10
16秒前
安详的白山完成签到,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
皮崇知发布了新的文献求助10
18秒前
19秒前
是菇凉发布了新的文献求助10
19秒前
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4217839
求助须知:如何正确求助?哪些是违规求助? 3751832
关于积分的说明 11797345
捐赠科研通 3416612
什么是DOI,文献DOI怎么找? 1875060
邀请新用户注册赠送积分活动 928856
科研通“疑难数据库(出版商)”最低求助积分说明 837857