Label-Free Estimation of Therapeutic Efficacy on 3D Cancer Spheres Using Convolutional Neural Network Image Analysis

伊立替康 奥沙利铂 活力测定 人工智能 卷积神经网络 微流控 计算机科学 深度学习 化学 模式识别(心理学) 生物系统 生物医学工程 纳米技术 癌症 医学 生物 细胞 材料科学 结直肠癌 生物化学 内科学
作者
Zhixiong Zhang,Lili Chen,Yimin Wang,Teng Zhang,Yu‐Chih Chen,Euisik Yoon
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:91 (21): 14093-14100 被引量:41
标识
DOI:10.1021/acs.analchem.9b03896
摘要

Despite recent advances in cancer treatment, developing better therapeutic reagents remains an essential task for oncologists. To accurately characterize drug efficacy, 3D cell culture holds great promise as opposed to conventional 2D monolayer culture. Due to the advantages of cell manipulation in high-throughput, various microfluidic platforms have been developed for drug screening with 3D models. However, the dissemination of microfluidic technology is overall slow, and one missing part is fast and low-cost assay readout. In this work, we developed a microfluidic chip forming 1920 tumor spheres for drug testing, and the platform is supported by automatic image collection and cropping for analysis. Using conventional LIVE/DEAD staining as the ground truth of sphere viability, we trained a convolutional neural network to estimate sphere viability based on its bright-field image. The estimated sphere viability was highly correlated with the ground truth (R-value > 0.84). In this manner, we precisely estimated drug efficacy of three chemotherapy drugs, doxorubicin, oxaliplatin, and irinotecan. We also cross-validated the trained networks of doxorubicin and oxaliplatin and found common bright-field morphological features indicating sphere viability. The discovery suggests the potential to train a generic network using some representative drugs and apply it to many different drugs in large-scale screening. The bright-field estimation of sphere viability saves LIVE/DEAD staining reagent cost and fluorescence imaging time. More importantly, the presented method allows viability estimation in a label-free and nondestructive manner. In short, with image processing and machine learning, the presented method provides a fast, low-cost, and label-free method to assess tumor sphere viability for large-scale drug screening in microfluidics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FYJY发布了新的文献求助10
3秒前
YOMU完成签到,获得积分10
4秒前
4秒前
jjjwd完成签到,获得积分10
4秒前
科研通AI2S应助神秘猎牛人采纳,获得10
5秒前
七月完成签到 ,获得积分10
7秒前
绝逝完成签到,获得积分10
8秒前
9秒前
刘涵发布了新的文献求助10
9秒前
pyimh发布了新的文献求助10
9秒前
香菜炒香菜完成签到,获得积分10
11秒前
zjzjzjzjzj完成签到 ,获得积分10
11秒前
Jasper应助yeluoyezhi采纳,获得10
12秒前
李爱国应助老迟到的芹菜采纳,获得10
12秒前
Su发布了新的文献求助20
12秒前
外向夏烟发布了新的文献求助10
12秒前
12秒前
纯真的听寒完成签到,获得积分10
12秒前
汉堡包应助智慧吗喽采纳,获得10
12秒前
光芒万丈完成签到 ,获得积分10
14秒前
厨师长发布了新的文献求助10
14秒前
KIRA发布了新的文献求助10
14秒前
杨羕完成签到,获得积分10
15秒前
16秒前
zhangqh发布了新的文献求助10
17秒前
jjjwd发布了新的文献求助10
17秒前
伟川周完成签到 ,获得积分10
17秒前
17秒前
ppsweek发布了新的文献求助10
18秒前
20秒前
日暮里发布了新的文献求助10
20秒前
可爱的函函应助牛爷爷采纳,获得10
21秒前
lwz2688完成签到,获得积分10
21秒前
21秒前
22秒前
ORAzzz完成签到,获得积分10
23秒前
awen发布了新的文献求助10
23秒前
shangyu66完成签到,获得积分10
24秒前
好学发布了新的文献求助10
25秒前
着急的青枫应助羊小葱采纳,获得20
25秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382091
求助须知:如何正确求助?哪些是违规求助? 4505305
关于积分的说明 14021347
捐赠科研通 4414723
什么是DOI,文献DOI怎么找? 2425063
邀请新用户注册赠送积分活动 1417914
关于科研通互助平台的介绍 1395817