Label-Free Estimation of Therapeutic Efficacy on 3D Cancer Spheres Using Convolutional Neural Network Image Analysis

伊立替康 奥沙利铂 活力测定 人工智能 卷积神经网络 微流控 计算机科学 深度学习 化学 模式识别(心理学) 生物系统 生物医学工程 纳米技术 癌症 医学 生物 细胞 材料科学 结直肠癌 生物化学 内科学
作者
Zhixiong Zhang,Lili Chen,Yimin Wang,Teng Zhang,Yu‐Chih Chen,Euisik Yoon
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:91 (21): 14093-14100 被引量:38
标识
DOI:10.1021/acs.analchem.9b03896
摘要

Despite recent advances in cancer treatment, developing better therapeutic reagents remains an essential task for oncologists. To accurately characterize drug efficacy, 3D cell culture holds great promise as opposed to conventional 2D monolayer culture. Due to the advantages of cell manipulation in high-throughput, various microfluidic platforms have been developed for drug screening with 3D models. However, the dissemination of microfluidic technology is overall slow, and one missing part is fast and low-cost assay readout. In this work, we developed a microfluidic chip forming 1920 tumor spheres for drug testing, and the platform is supported by automatic image collection and cropping for analysis. Using conventional LIVE/DEAD staining as the ground truth of sphere viability, we trained a convolutional neural network to estimate sphere viability based on its bright-field image. The estimated sphere viability was highly correlated with the ground truth (R-value > 0.84). In this manner, we precisely estimated drug efficacy of three chemotherapy drugs, doxorubicin, oxaliplatin, and irinotecan. We also cross-validated the trained networks of doxorubicin and oxaliplatin and found common bright-field morphological features indicating sphere viability. The discovery suggests the potential to train a generic network using some representative drugs and apply it to many different drugs in large-scale screening. The bright-field estimation of sphere viability saves LIVE/DEAD staining reagent cost and fluorescence imaging time. More importantly, the presented method allows viability estimation in a label-free and nondestructive manner. In short, with image processing and machine learning, the presented method provides a fast, low-cost, and label-free method to assess tumor sphere viability for large-scale drug screening in microfluidics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ljs发布了新的文献求助10
刚刚
英姑应助yuuuue采纳,获得10
刚刚
Cyber_relic完成签到,获得积分10
1秒前
cmzb发布了新的文献求助10
1秒前
vvei完成签到,获得积分10
1秒前
南吕完成签到,获得积分10
1秒前
1秒前
1秒前
11完成签到,获得积分10
2秒前
2秒前
VDC应助科研通管家采纳,获得30
4秒前
隐形曼青应助科研通管家采纳,获得30
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
Ashes完成签到,获得积分10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
东方三问应助科研通管家采纳,获得30
4秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
香蕉觅云应助化学学渣采纳,获得10
5秒前
5秒前
科研助手6应助科研通管家采纳,获得10
5秒前
5秒前
淡淡的浩天完成签到,获得积分10
5秒前
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
彭于晏应助中央戏精学院采纳,获得10
5秒前
11发布了新的文献求助10
5秒前
drew完成签到 ,获得积分10
6秒前
xiaobai2025完成签到 ,获得积分10
6秒前
6秒前
上好佳完成签到,获得积分10
7秒前
Avra发布了新的文献求助10
8秒前
8秒前
舒窈发布了新的文献求助10
8秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796310
求助须知:如何正确求助?哪些是违规求助? 3341256
关于积分的说明 10305642
捐赠科研通 3057817
什么是DOI,文献DOI怎么找? 1677946
邀请新用户注册赠送积分活动 805721
科研通“疑难数据库(出版商)”最低求助积分说明 762759