生物相容性
自愈水凝胶
绷带
材料科学
纤维素
生物医学工程
隐形眼镜
纳米技术
外科
眼科
医学
化学工程
高分子化学
工程类
冶金
作者
Marcia W. Patchan,Jeesoo Chae,Justin D. Lee,Xiomara Calderón‐Colón,Jeffrey Maranchi,Russell L. McCally,Oliver D. Schein,Jennifer H. Elisseeff,Morgana M. Trexler
标识
DOI:10.1177/0885328215616273
摘要
Prompt emergency treatment for ocular injury, particularly in a battlefield setting, is essential to preserve vision, reduce pain, and prevent secondary infection. A bandage contact lens that could be applied in the field, at the time of injury, would protect the injured ocular surface until hospital treatment is available. Cellulose, a natural polymer, is widely used in biomedical applications including bandage materials. Hydrogels synthesized from different cellulose sources, such as plants, cotton, and bacteria, can have the optical transparency and mechanical strength of contact lenses, by tailoring synthesis parameters. Thus, we optimized the fabrication of cellulose-based hydrogels and evaluated their in vivo biocompatibility and related physical properties. Our data demonstrate that along with tailorable physical properties, our novel cellulose-based hydrogels could be made with contact lens geometry, exhibit no significant signs of material toxicity after 22 days of in vivo testing, and show significant promise for use as a corneal bandage immediately following ocular trauma.
科研通智能强力驱动
Strongly Powered by AbleSci AI