Development and validation of medical record-based logistic regression and machine learning models to diagnose diabetic retinopathy

医学 逻辑回归 接收机工作特性 糖尿病性视网膜病变 队列 全国健康与营养检查调查 内科学 糖尿病 人口 内分泌学 环境卫生
作者
Heyan Li,Li Dong,Wen‐Da Zhou,Haotian Wu,Ruiheng Zhang,Yi-Tong Li,Chuyao Yu,Wenbin Wei
出处
期刊:Graefes Archive for Clinical and Experimental Ophthalmology [Springer Science+Business Media]
卷期号:261 (3): 681-689 被引量:16
标识
DOI:10.1007/s00417-022-05854-9
摘要

PurposesMany factors were reported to be associated with diabetic retinopathy (DR); however, their contributions remained unclear. We aimed to evaluate the prognostic and diagnostic accuracy of logistic regression and three machine learning models based on various medical records.MethodsThis was a cross-sectional study. We investigated the prevalence and associations of DR among 757 participants aged 40 years or older in the 2005–2006 National Health and Nutrition Examination Survey (NHANES). We trained the models to predict if the participants had DR with 15 predictor variables. Area under the receiver operating characteristic (AUROC) and mean squared error (MSE) of each algorithm were compared in the external validation dataset using a replicate cohort from NHANES 2007–2008.ResultsAmong the 757 participants, 53 (7.00%) subjects had DR, the mean (standard deviation, SD) age was 57.7 (13.04), and 78.0% were male (n = 42). Logistic regression revealed that female gender (OR = 4.130, 95% CI: 1.820–9.380; P < 0.05), HbA1c (OR = 1.665, 95% CI: 1.197–2.317; P < 0.05), serum creatine level (OR = 2.952, 95% CI: 1.274–6.851; P < 0.05), and eGFR level (OR = 1.009, 95% CI: 1.000–1.014, P < 0.05) increased the risk of DR. The average performance obtained from internal validation was similar in all models (AUROC ≥ 0.945), and k-nearest neighbors (KNN) had the highest value with an AUROC of 0.984. In external validation, they remained robust or with modest reductions in discrimination with AUROC still ≥ 0.902, and KNN also performed the best with an AUROC of 0.982. Both logistic regression and machine learning models had good performance in the clinical diagnosis of DR.ConclusionsThis study highlights the utility of comparing traditional logistic regression to machine learning models. We found that logistic regression performed as well as optimized machine learning methods when classifying DR patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jasper应助小鱼干采纳,获得10
2秒前
科研通AI5应助wsy采纳,获得10
2秒前
3秒前
3秒前
4秒前
成就若颜完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
两滴水的云完成签到,获得积分10
8秒前
9秒前
9秒前
浮游应助gww采纳,获得10
10秒前
毛毛完成签到,获得积分10
10秒前
迟迟发布了新的文献求助10
10秒前
xii完成签到 ,获得积分10
12秒前
繁星点点贝壳完成签到,获得积分20
13秒前
北鱼发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
肖晓珍发布了新的文献求助10
15秒前
15秒前
Duanwen完成签到 ,获得积分10
15秒前
Hangerli发布了新的文献求助20
16秒前
希望天下0贩的0应助小蓝采纳,获得10
17秒前
18秒前
21秒前
超越梦想发布了新的文献求助20
23秒前
周思怡完成签到,获得积分10
24秒前
24秒前
大个应助端庄以晴采纳,获得10
24秒前
科研通AI6应助苗条映菱采纳,获得10
24秒前
xelloss完成签到,获得积分10
25秒前
肖晓珍完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
26秒前
香蕉觅云应助我有一只羊采纳,获得10
26秒前
万能图书馆应助gww采纳,获得10
26秒前
song完成签到,获得积分10
27秒前
lllllll发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950846
求助须知:如何正确求助?哪些是违规求助? 4213481
关于积分的说明 13104765
捐赠科研通 3995430
什么是DOI,文献DOI怎么找? 2186907
邀请新用户注册赠送积分活动 1202153
关于科研通互助平台的介绍 1115408