Cardiac amyloidosis detection from a single echocardiographic video clip: a novel artificial intelligence-based screening tool

医学 心脏淀粉样变性 接收机工作特性 转甲状腺素 闪烁照相术 淀粉样变性 内科学 射血分数 心脏病学 曲线下面积 人工智能 核医学 心力衰竭 计算机科学
作者
Jeremy Slivnick,Will Hawkes,Jorge C. Oliveira,Gary Woodward,Ashley P. Akerman,Alberto Gómez,Izhan Hamza,Viral Desai,Zachary Barrett‐O’Keefe,Martha Grogan,Angela Dispenzieri,Christopher G. Scott,Halley Davison,Juan Ignacio Cotella,Mathew S. Maurer,Stephen Helmke,Marielle Scherrer‐Crosbie,Marwa Soltani,Akash Goyal,Karolina M. Zaręba
出处
期刊:European Heart Journal [Oxford University Press]
标识
DOI:10.1093/eurheartj/ehaf387
摘要

Abstract Background and Aims Accurate differentiation of cardiac amyloidosis (CA) from phenotypic mimics remains challenging using current clinical and echocardiographic techniques. The accuracy of a novel artificial intelligence (AI) screening algorithm for echocardiography-based CA detection was assessed. Methods Utilizing a multisite, multiethnic dataset (n = 2612, 52% CA), a convolutional neural network was trained to differentiate CA from phenotypic controls using transthoracic apical four-chamber video clips. External validation was conducted globally across 18 sites including 597 CA cases and 2122 controls. Classification accuracy was assessed on the entire external validation dataset, and subgroup analyses were performed both on technetium pyrophosphate scintigraphy referrals, and individuals matched for age, sex, and wall thickness. Model accuracy was also compared with the transthyretin CA score and the increased wall thickness score within a subset of older heart failure with preserved ejection fraction patients with increased wall thickness. Results Cardiac amyloidosis patients and controls displayed similar age, sex, race, and comorbidities. After the removal of uncertain AI predictions (13%), model discrimination and classification were excellent for the entire external validation dataset [area under the receiver operating characteristic curve (AUROC) 0.93, sensitivity 85%, specificity 93%], irrespective of CA subtype (sensitivity: light-chain = 84%, wild-type transthyretin = 85%, and hereditary transthyretin = 86%). Performance was maintained in subgroup analysis in patients clinically referred for technetium pyrophosphate scintigraphy imaging (AUROC 0.86, sensitivity 77%, specificity 86%) and matched patients (AUROC 0.92, sensitivity 84%, specificity 91%). The AI model (AUROC 0.93) also outperformed transthyretin CA score (AUROC 0.73) and increased wall thickness (AUROC 0.80) scores. Conclusions This AI screening model—using only an apical four-chamber view—effectively differentiated CA from other causes of increased left ventricular wall thickness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrN发布了新的文献求助10
1秒前
云上人完成签到,获得积分10
2秒前
Hou完成签到 ,获得积分10
3秒前
3秒前
3秒前
枫桥夜泊关注了科研通微信公众号
3秒前
GTL发布了新的文献求助10
7秒前
9秒前
11秒前
13秒前
1ssd发布了新的文献求助10
16秒前
GTL完成签到,获得积分10
16秒前
17秒前
852应助阿兰采纳,获得10
18秒前
18秒前
清辞完成签到,获得积分20
18秒前
21秒前
大个应助干冷安采纳,获得10
21秒前
枫桥夜泊发布了新的文献求助10
23秒前
以德服人发布了新的文献求助200
23秒前
23秒前
24秒前
忐忑的尔容完成签到,获得积分20
24秒前
25秒前
科研小张完成签到 ,获得积分10
25秒前
Lagom发布了新的文献求助10
26秒前
MZX发布了新的文献求助10
27秒前
2645546902完成签到,获得积分10
27秒前
28秒前
28秒前
鸢尾松茶完成签到,获得积分10
29秒前
狂野萤完成签到,获得积分10
30秒前
眯眯眼的网络完成签到,获得积分10
31秒前
31秒前
舒适的书雪完成签到,获得积分10
31秒前
小蘑菇应助wddfz采纳,获得30
33秒前
33秒前
dddyrrrrr完成签到 ,获得积分10
35秒前
ljh1771完成签到,获得积分10
35秒前
追寻念云完成签到 ,获得积分10
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4170548
求助须知:如何正确求助?哪些是违规求助? 3706244
关于积分的说明 11694237
捐赠科研通 3392235
什么是DOI,文献DOI怎么找? 1860610
邀请新用户注册赠送积分活动 920451
科研通“疑难数据库(出版商)”最低求助积分说明 832674