核梭杆菌
细菌粘附素
细胞生物学
粘附
细胞粘附
微生物学
受体
化学
生物
生物物理学
细菌
毒力
生物化学
遗传学
牙龈卟啉单胞菌
基因
有机化学
作者
Fan Shen,Linjie Li,Dongchun Yang,Zhi-Cheng Tang,Lu Zhang,Kefang Liu,Wenzhe Hou,Zhuozhuang Lu,Fang Jingyuan,Jianxun Qi,Xin Zhao,George F. Gao
标识
DOI:10.1073/pnas.2516574122
摘要
In eukaryotic systems, three major types of cell junctions have been well characterized. While bacterial adhesion mechanisms also exhibit remarkable diversity, the molecular processes that regulate the dynamic modulation of binding strength between elongated bacterial cells and host cells remain poorly understood. Fusobacterium nucleatum ( F. nucleatum ) utilizes the surface adhesin CbpF to interact with the highly expressed host receptors CEACAM1 and CEACAM5 on cancer cells to facilitate tumor colonization. By elucidating the structural details of CbpF binding to human CEACAM1/CEACAM5 receptors, and through mechanistic investigations, we identified that the prominent EFNGQYQ loop on CbpF and the key Q78 residue of CEACAM1/CEACAM5 constitute the molecular linchpin of this pathogen–host interface. Furthermore, we found a distinct type of binding particle and proposed a Velcro-like adhesion model. In this model, CbpF mediates robust attachment through the simultaneous interaction of multiple binding sites, akin to the interlocking mechanism of Velcro. This multivalent interaction allows F. nucleatum to dynamically switch between firm anchoring and easy detachment, adapting to varying physiological microenvironments. Our study elucidates the dynamic modulation of bacterial adhesion strength and lays the foundation for developing therapeutic interventions to disrupt the bacterium–host interface.
科研通智能强力驱动
Strongly Powered by AbleSci AI