亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multicenter Validation of Automated Segmentation and Composition Analysis of Lumbar Paraspinal Muscles Using Multisequence MRI

分割 组内相关 腰椎 医学 计算机科学 人工智能 放射科 统计 数学 再现性
作者
Zhongyi Zhang,Julie A. Hides,Enrico De Martino,Janet R. Millner,Gervase Tuxworth
出处
期刊:Radiology [Radiological Society of North America]
标识
DOI:10.1148/ryai.240833
摘要

“Just Accepted” papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Chronic low back pain is a global health issue with considerable socioeconomic burdens and is associated with changes in lumbar paraspinal muscles (LPM). In this retrospective study, a deep learning method was trained and externally validated for automated LPM segmentation, muscle volume quantification, and fatty infiltration assessment across multisequence MRIs. A total of 1,302 MRIs from 641 participants across five centers were included. Data from two centers were used for model training and tuning, while data from the remaining three centers were used for external testing. Model segmentation performance was evaluated against manual segmentation using the Dice similarity coefficient (DSC), and measurement accuracy was assessed using two one-sided tests and Intraclass Correlation Coefficients (ICCs). The model achieved global DSC values of 0.98 on the internal test set and 0.93 to 0.97 on external test sets. Statistical equivalence between automated and manual measurements of muscle volume and fat ratio was confirmed in most regions ( P < .05). Agreement between automated and manual measurements was high (ICCs > 0.92). In conclusion, the proposed automated method accurately segmented LPM and demonstrated statistical equivalence to manual measurements of muscle volume and fatty infiltration ratio across multisequence, multicenter MRIs. ©RSNA, 2025
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小金胖子完成签到,获得积分10
9秒前
12秒前
量子星尘发布了新的文献求助10
18秒前
siv发布了新的文献求助10
20秒前
Jessie完成签到,获得积分10
1分钟前
漂亮夏兰完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
研友_Lw46dn发布了新的文献求助10
2分钟前
研友_Lw46dn完成签到,获得积分10
2分钟前
可可完成签到 ,获得积分10
3分钟前
3分钟前
万能图书馆应助箴言Julius采纳,获得10
4分钟前
ljx完成签到 ,获得积分10
4分钟前
4分钟前
箴言Julius发布了新的文献求助10
4分钟前
隐形曼青应助yangbin710采纳,获得10
6分钟前
6分钟前
6分钟前
yangbin710发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
箴言Julius完成签到,获得积分10
7分钟前
毛姑朵花完成签到 ,获得积分10
8分钟前
彭于晏应助科研通管家采纳,获得10
8分钟前
orixero应助科研通管家采纳,获得10
8分钟前
8分钟前
9分钟前
Zzz_Carlos完成签到 ,获得积分10
9分钟前
箴言Julius关注了科研通微信公众号
10分钟前
小蘑菇应助科研通管家采纳,获得10
10分钟前
10分钟前
10分钟前
WU发布了新的文献求助10
10分钟前
小羊咩完成签到 ,获得积分0
10分钟前
浮游应助null采纳,获得10
11分钟前
11分钟前
11分钟前
爱思考的小笨笨完成签到,获得积分10
11分钟前
12分钟前
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4682475
求助须知:如何正确求助?哪些是违规求助? 4057873
关于积分的说明 12545632
捐赠科研通 3753382
什么是DOI,文献DOI怎么找? 2073023
邀请新用户注册赠送积分活动 1101992
科研通“疑难数据库(出版商)”最低求助积分说明 981274