亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multichannel deep learning prediction of major pathological response after neoadjuvant immunochemotherapy in lung cancer: a multicenter diagnostic study

医学 人工智能 深度学习 置信区间 肺癌 接收机工作特性 曲线下面积 放射科 机器学习 核医学 内科学 计算机科学
作者
Zuhan Geng,Kuo Li,Peiyuan Mei,Zhenyu Gong,Ruiyang Yan,Yu Huang,Chi Zhang,Bowen Zhao,Mingqian Lu,Ran Yang,Guangyao Wu,Guanchao Ye,Yongde Liao
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002821
摘要

Objectives: This study aimed to develop a pretreatment CT-based multichannel predictor integrating deep learning features encoded by Transformer models for preoperative diagnosis of major pathological response (MPR) in non-small cell lung cancer (NSCLC) patients receiving neoadjuvant immunochemotherapy. Material and Methods: This multicenter diagnostic study retrospectively included 332 NSCLC patients from four centers. Pretreatment computed tomography images were preprocessed and segmented into region of interest cubes for radiomics modeling. These cubes were cropped into four groups of 2 dimensional image modules. GoogLeNet architecture was trained independently on each group within a multichannel framework, with gradient-weighted class activation mapping and SHapley Additive exPlanations value‌ for visualization. Deep learning features were carefully extracted and fused across the four image groups using the Transformer fusion model. After models training, model performance was evaluated via the area under the curve (AUC), sensitivity, specificity, F1 score, confusion matrices, calibration curves, decision curve analysis, integrated discrimination improvement, net reclassification improvement, and DeLong test. Results: The dataset was allocated into training (n = 172, Center 1), internal validation (n = 44, Center 1), and external test (n = 116, Centers 2–4) cohorts. Four optimal deep learning models and the best Transformer fusion model were developed. In the external test cohort, traditional radiomics model exhibited an AUC of 0.736 [95% confidence interval (CI): 0.645–0.826]. The‌ optimal deep learning imaging ‌module‌ showed superior AUC of 0.855 (95% CI: 0.777–0.934). The fusion model named Transformer_GoogLeNet further improved classification accuracy (AUC = 0.924, 95% CI: 0.875–0.973). Conclusion: The new method of fusing multichannel deep learning with the Transformer Encoder can accurately diagnose whether NSCLC patients receiving neoadjuvant immunochemotherapy will achieve MPR. Our findings may support improved surgical planning and contribute to better treatment outcomes through more accurate preoperative assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aswl完成签到 ,获得积分10
28秒前
鬼见愁应助科研通管家采纳,获得10
46秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
1分钟前
bkagyin应助61采纳,获得10
1分钟前
drirshad发布了新的文献求助50
1分钟前
赘婿应助ChenXY采纳,获得10
1分钟前
1分钟前
ChenXY发布了新的文献求助10
1分钟前
ChenXY完成签到,获得积分10
1分钟前
Haifeng应助tutu采纳,获得10
2分钟前
英喆完成签到 ,获得积分10
2分钟前
TXZ06发布了新的文献求助30
3分钟前
Joshua应助tutu采纳,获得30
3分钟前
火星上的惜霜完成签到 ,获得积分10
3分钟前
微笑代荷完成签到 ,获得积分10
4分钟前
5分钟前
kuoping完成签到,获得积分0
5分钟前
xyliu完成签到,获得积分10
5分钟前
矛头蝮应助科研通管家采纳,获得10
6分钟前
矛头蝮应助科研通管家采纳,获得10
6分钟前
7分钟前
mm完成签到 ,获得积分10
7分钟前
矛头蝮应助科研通管家采纳,获得10
8分钟前
矛头蝮应助科研通管家采纳,获得10
8分钟前
矛头蝮应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
Microbiota完成签到,获得积分10
10分钟前
冬去春来完成签到 ,获得积分10
10分钟前
矛头蝮应助科研通管家采纳,获得10
10分钟前
矛头蝮应助科研通管家采纳,获得10
10分钟前
矛头蝮应助科研通管家采纳,获得10
10分钟前
10分钟前
haralee完成签到 ,获得积分10
11分钟前
青树柠檬完成签到 ,获得积分10
11分钟前
欢呼沅完成签到,获得积分10
11分钟前
azr发布了新的文献求助10
12分钟前
12分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1200
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 860
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4197463
求助须知:如何正确求助?哪些是违规求助? 3733026
关于积分的说明 11754925
捐赠科研通 3406817
什么是DOI,文献DOI怎么找? 1869354
邀请新用户注册赠送积分活动 925280
科研通“疑难数据库(出版商)”最低求助积分说明 835808