亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multichannel deep learning prediction of major pathological response after neoadjuvant immunochemotherapy in lung cancer: a multicenter diagnostic study

医学 人工智能 深度学习 置信区间 肺癌 接收机工作特性 曲线下面积 放射科 机器学习 核医学 内科学 计算机科学
作者
Zuhan Geng,Kuo Li,Peiyuan Mei,Zhenyu Gong,Ruiyang Yan,Yu Huang,Chi Zhang,Bowen Zhao,Mingqian Lu,Ran Yang,Guangyao Wu,Guanchao Ye,Yongde Liao
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:111 (10): 6614-6626 被引量:1
标识
DOI:10.1097/js9.0000000000002821
摘要

Objectives: This study aimed to develop a pretreatment CT-based multichannel predictor integrating deep learning features encoded by Transformer models for preoperative diagnosis of major pathological response (MPR) in non-small cell lung cancer (NSCLC) patients receiving neoadjuvant immunochemotherapy. Material and methods: This multicenter diagnostic study retrospectively included 332 NSCLC patients from four centers. Pretreatment computed tomography images were preprocessed and segmented into region of interest cubes for radiomics modeling. These cubes were cropped into four groups of two-dimensional image modules. GoogLeNet architecture was trained independently on each group within a multichannel framework, with gradient-weighted class activation mapping and SHapley Additive exPlanations value for visualization. Deep learning features were carefully extracted and fused across the four image groups using the Transformer fusion model. After models training, model performance was evaluated via the area under the curve (AUC), sensitivity, specificity, F1 score, confusion matrices, calibration curves, decision curve analysis, integrated discrimination improvement, net reclassification improvement, and DeLong test. Results: The dataset was allocated into training (n = 172, Center 1), internal validation (n = 44, Center 1), and external test (n = 116, Centers 2–4) cohorts. Four optimal deep learning models and the best Transformer fusion model were developed. In the external test cohort, traditional radiomics model exhibited an AUC of 0.736 [95% confidence interval (CI): 0.645–0.826]. The optimal deep learning imaging module showed superior AUC of 0.855 (95% CI: 0.777–0.934). The fusion model named Transformer_GoogLeNet further improved classification accuracy (AUC = 0.924, 95% CI: 0.875–0.973). Conclusion: The new method of fusing multichannel deep learning with the Transformer Encoder can accurately diagnose whether NSCLC patients receiving neoadjuvant immunochemotherapy will achieve MPR. Our findings may support improved surgical planning and contribute to better treatment outcomes through more accurate preoperative assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
852应助koubi采纳,获得10
8秒前
10秒前
善学以致用应助Harrison采纳,获得10
28秒前
浮游应助mmm采纳,获得10
35秒前
41秒前
koubi发布了新的文献求助10
47秒前
打打应助ZoyaR采纳,获得10
51秒前
55秒前
koubi完成签到,获得积分10
1分钟前
1分钟前
ZoyaR发布了新的文献求助10
1分钟前
1分钟前
mmm完成签到,获得积分10
1分钟前
1分钟前
ZoyaR完成签到,获得积分10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
研友_R2D2发布了新的文献求助10
1分钟前
1分钟前
1分钟前
清风朗月发布了新的文献求助10
2分钟前
2分钟前
2分钟前
斯文败类应助清风朗月采纳,获得10
2分钟前
Harrison发布了新的文献求助10
2分钟前
李爱国应助轻松凌柏采纳,获得10
2分钟前
2分钟前
俏皮的钻石完成签到 ,获得积分10
2分钟前
轻松凌柏完成签到 ,获得积分10
3分钟前
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
yeah完成签到 ,获得积分10
4分钟前
4分钟前
田様应助whz采纳,获得10
5分钟前
5分钟前
5分钟前
ramsey33完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482443
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512328
什么是DOI,文献DOI怎么找? 2472820
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553