Multichannel deep learning prediction of major pathological response after neoadjuvant immunochemotherapy in lung cancer: a multicenter diagnostic study

医学 人工智能 深度学习 置信区间 肺癌 接收机工作特性 曲线下面积 放射科 机器学习 核医学 内科学 计算机科学
作者
Zuhan Geng,Kuo Li,Peiyuan Mei,Zhenyu Gong,Ruiyang Yan,Yu Huang,Chi Zhang,Bowen Zhao,Mingqian Lu,Ran Yang,Guangyao Wu,Guanchao Ye,Yongde Liao
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000002821
摘要

Objectives: This study aimed to develop a pretreatment CT-based multichannel predictor integrating deep learning features encoded by Transformer models for preoperative diagnosis of major pathological response (MPR) in non-small cell lung cancer (NSCLC) patients receiving neoadjuvant immunochemotherapy. Material and Methods: This multicenter diagnostic study retrospectively included 332 NSCLC patients from four centers. Pretreatment computed tomography images were preprocessed and segmented into region of interest cubes for radiomics modeling. These cubes were cropped into four groups of 2 dimensional image modules. GoogLeNet architecture was trained independently on each group within a multichannel framework, with gradient-weighted class activation mapping and SHapley Additive exPlanations value‌ for visualization. Deep learning features were carefully extracted and fused across the four image groups using the Transformer fusion model. After models training, model performance was evaluated via the area under the curve (AUC), sensitivity, specificity, F1 score, confusion matrices, calibration curves, decision curve analysis, integrated discrimination improvement, net reclassification improvement, and DeLong test. Results: The dataset was allocated into training (n = 172, Center 1), internal validation (n = 44, Center 1), and external test (n = 116, Centers 2–4) cohorts. Four optimal deep learning models and the best Transformer fusion model were developed. In the external test cohort, traditional radiomics model exhibited an AUC of 0.736 [95% confidence interval (CI): 0.645–0.826]. The‌ optimal deep learning imaging ‌module‌ showed superior AUC of 0.855 (95% CI: 0.777–0.934). The fusion model named Transformer_GoogLeNet further improved classification accuracy (AUC = 0.924, 95% CI: 0.875–0.973). Conclusion: The new method of fusing multichannel deep learning with the Transformer Encoder can accurately diagnose whether NSCLC patients receiving neoadjuvant immunochemotherapy will achieve MPR. Our findings may support improved surgical planning and contribute to better treatment outcomes through more accurate preoperative assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
星辰大海应助橙子采纳,获得10
3秒前
liu发布了新的文献求助150
3秒前
4秒前
4秒前
5秒前
5秒前
斯文败类应助梨梨采纳,获得10
5秒前
Jasper应助仁爱的依波采纳,获得10
5秒前
5秒前
6秒前
解语花发布了新的文献求助30
6秒前
6秒前
Cristoal完成签到,获得积分20
6秒前
希度发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
斯文败类应助浅夏采纳,获得10
8秒前
玉子完成签到,获得积分10
9秒前
9秒前
斯坦森发布了新的文献求助10
9秒前
饱满的妙梦完成签到,获得积分20
9秒前
10秒前
归尘发布了新的文献求助10
10秒前
大气的代芙关注了科研通微信公众号
10秒前
Cristoal发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
迅速茹嫣完成签到,获得积分10
13秒前
所所应助猪变成了蛾子采纳,获得10
14秒前
CHENGJIAO发布了新的文献求助10
14秒前
15秒前
fufu完成签到,获得积分10
15秒前
15秒前
可爱的函函应助橘子采纳,获得30
16秒前
JamesPei应助micaixing2006采纳,获得10
17秒前
科目三应助mwang012采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005534
求助须知:如何正确求助?哪些是违规求助? 4249119
关于积分的说明 13239987
捐赠科研通 4048734
什么是DOI,文献DOI怎么找? 2215036
邀请新用户注册赠送积分活动 1224973
关于科研通互助平台的介绍 1145351