亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multichannel deep learning prediction of major pathological response after neoadjuvant immunochemotherapy in lung cancer: a multicenter diagnostic study

医学 人工智能 深度学习 置信区间 肺癌 接收机工作特性 曲线下面积 放射科 机器学习 核医学 内科学 计算机科学
作者
Zuhan Geng,Kuo Li,Peiyuan Mei,Zhenyu Gong,Ruiyang Yan,Yu Huang,Chi Zhang,Bowen Zhao,Mingqian Lu,Ran Yang,Guangyao Wu,Guanchao Ye,Yongde Liao
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:111 (10): 6614-6626 被引量:1
标识
DOI:10.1097/js9.0000000000002821
摘要

Objectives: This study aimed to develop a pretreatment CT-based multichannel predictor integrating deep learning features encoded by Transformer models for preoperative diagnosis of major pathological response (MPR) in non-small cell lung cancer (NSCLC) patients receiving neoadjuvant immunochemotherapy. Material and methods: This multicenter diagnostic study retrospectively included 332 NSCLC patients from four centers. Pretreatment computed tomography images were preprocessed and segmented into region of interest cubes for radiomics modeling. These cubes were cropped into four groups of two-dimensional image modules. GoogLeNet architecture was trained independently on each group within a multichannel framework, with gradient-weighted class activation mapping and SHapley Additive exPlanations value for visualization. Deep learning features were carefully extracted and fused across the four image groups using the Transformer fusion model. After models training, model performance was evaluated via the area under the curve (AUC), sensitivity, specificity, F1 score, confusion matrices, calibration curves, decision curve analysis, integrated discrimination improvement, net reclassification improvement, and DeLong test. Results: The dataset was allocated into training (n = 172, Center 1), internal validation (n = 44, Center 1), and external test (n = 116, Centers 2–4) cohorts. Four optimal deep learning models and the best Transformer fusion model were developed. In the external test cohort, traditional radiomics model exhibited an AUC of 0.736 [95% confidence interval (CI): 0.645–0.826]. The optimal deep learning imaging module showed superior AUC of 0.855 (95% CI: 0.777–0.934). The fusion model named Transformer_GoogLeNet further improved classification accuracy (AUC = 0.924, 95% CI: 0.875–0.973). Conclusion: The new method of fusing multichannel deep learning with the Transformer Encoder can accurately diagnose whether NSCLC patients receiving neoadjuvant immunochemotherapy will achieve MPR. Our findings may support improved surgical planning and contribute to better treatment outcomes through more accurate preoperative assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
浮游漂漂应助Karol采纳,获得10
6秒前
可爱花瓣完成签到,获得积分10
8秒前
10秒前
13秒前
17秒前
20秒前
23秒前
酷酷的大米完成签到,获得积分10
24秒前
Lebpom发布了新的文献求助10
25秒前
32秒前
馒头发布了新的文献求助10
36秒前
38秒前
42秒前
45秒前
所所应助Lebpom采纳,获得30
47秒前
快乐芷荷完成签到 ,获得积分10
49秒前
CipherSage应助动听的又亦采纳,获得10
57秒前
英俊的铭应助LucyMartinez采纳,获得10
1分钟前
敬业乐群完成签到,获得积分10
1分钟前
1分钟前
1分钟前
LucyMartinez发布了新的文献求助10
1分钟前
顾矜应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
馒头完成签到,获得积分20
1分钟前
潇洒莞完成签到 ,获得积分10
1分钟前
1分钟前
Ava应助能力越小责任越小采纳,获得20
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
默默善愁发布了新的文献求助10
1分钟前
Victory完成签到,获得积分10
1分钟前
yara完成签到 ,获得积分10
1分钟前
1分钟前
宇称yu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746620
求助须知:如何正确求助?哪些是违规求助? 5436547
关于积分的说明 15355678
捐赠科研通 4886645
什么是DOI,文献DOI怎么找? 2627324
邀请新用户注册赠送积分活动 1575809
关于科研通互助平台的介绍 1532565