Abstract 899: Development of a deep learning model for cell type mapping in colorectal cancer using H&E images leveraging image-based spatial transcriptomics data

结直肠癌 癌症 转录组 人工智能 计算生物学 计算机科学 数据类型 图像(数学) 模式识别(心理学) 生物 医学 癌症研究 地图学 内科学 地理 遗传学 基因表达 基因 程序设计语言
作者
Seungho Cook,Dongjoo Lee,Myunghyun Lim,Jae Eun Lee,Daeseung Lee,Hyung‐Jun Im,Jung‐Soo Pyo,Kwon Joong Na,Hongyoon Choi
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 899-899
标识
DOI:10.1158/1538-7445.am2024-899
摘要

Abstract Purpose The tumor microenvironment (TME) is crucial in colorectal cancer as it influences disease progression, treatment response, and patient outcomes, providing valuable insights for personalized therapies and prognostic assessments. Here, we have developed a deep learning model by integrating hematoxylin and eosin (H&E) stained images of colorectal cancer and image-based spatial transcriptomics (Xenium) to infer spatial mapping of cell types in TME only using H&E images. Methods A total of 30 H&E images of colorectal cancer obtained by tissue microarray were registered with image-based spatial transcriptomics data (Xenium). Utilizing a Variational Autoencoder (VAE) based model and leveraging reference single-cell data enables the acquisition of cell types for individual cells in image-based spatial transcriptomics. A convolutional neural network (CNN) model was developed using H&E image as inputs to predict cell types in H&E-stained tissue image patches of colorectal cancer collected from various patients. The model also estimated the cell types from H&E-stained whole slide tissue image of colorectal cancer of The Cancer Genome Atlas (TCGA-COAD). Results The accuracy of the model's predictions for cell types using H&E image patches was notably high and exhibited a significant concordance with the results obtained through the validation. The Intersection over Union (IoU) metric for image segmentation indicated a value of 0.66 for epithelial cells and 0.44 for TNK cells. The output of deep learning model for epithelial cells and T/NK cells from TCGA-COAD tissue images showed a correlation with human-labeled regions of cancer epithelium and immune cells. Conclusions Leveraging image-based spatial transcriptomics, we developed a deep learning model capable of discerning various cell types within the tumor microenvironment solely from H&E images. This clinically translatable approach is valuable for investigating tumor microenvironment to develop biomarkers associated with various cancer therapeutics particularly immuno-oncology drugs. This approach can yield objective deep learning-based models without human labels for characterizing the tumor microenvironment in single-cell resolution, particularly regarding spatial immune distribution. Citation Format: Seungho Cook, Dongjoo Lee, Myunghyun Lim, Jae Eun Lee, Daeseung Lee, Hyung-Jun Im, Jung-Soo Pyo, Kwon Joong Na, Hongyoon Choi. Development of a deep learning model for cell type mapping in colorectal cancer using H&E images leveraging image-based spatial transcriptomics data [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 899.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小康学弟完成签到 ,获得积分10
5秒前
lmq完成签到 ,获得积分10
5秒前
7秒前
木棉完成签到,获得积分10
15秒前
你还睡得着完成签到 ,获得积分10
15秒前
lkc完成签到,获得积分10
18秒前
水星完成签到 ,获得积分10
24秒前
单小芫完成签到 ,获得积分10
32秒前
Steven发布了新的文献求助10
32秒前
lielizabeth完成签到 ,获得积分0
33秒前
TTDY完成签到 ,获得积分0
33秒前
睡觉王完成签到 ,获得积分10
34秒前
半夏完成签到 ,获得积分10
43秒前
xiang完成签到 ,获得积分10
47秒前
诺奇完成签到,获得积分10
53秒前
猪猪hero应助科研通管家采纳,获得10
57秒前
猪猪hero应助科研通管家采纳,获得10
57秒前
跳跃从雪完成签到 ,获得积分10
1分钟前
1分钟前
听寒完成签到,获得积分10
1分钟前
沙海沉戈完成签到,获得积分0
1分钟前
xiaozou55完成签到 ,获得积分10
1分钟前
哈哈哈完成签到 ,获得积分10
1分钟前
1分钟前
今天进步了吗完成签到,获得积分10
1分钟前
kaier完成签到 ,获得积分10
1分钟前
CYYDNDB完成签到 ,获得积分10
1分钟前
yiren完成签到 ,获得积分10
1分钟前
julian190完成签到,获得积分10
2分钟前
调皮的蓝天完成签到 ,获得积分10
2分钟前
2分钟前
Yes0419完成签到,获得积分10
2分钟前
殷勤的紫槐完成签到,获得积分10
2分钟前
Conner完成签到 ,获得积分10
2分钟前
英俊绝义完成签到 ,获得积分10
2分钟前
zzzzzz完成签到 ,获得积分10
2分钟前
Angie发布了新的文献求助10
2分钟前
科研通AI5应助吴学仕采纳,获得10
2分钟前
十年HLX完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779247
求助须知:如何正确求助?哪些是违规求助? 3324813
关于积分的说明 10220009
捐赠科研通 3039964
什么是DOI,文献DOI怎么找? 1668526
邀请新用户注册赠送积分活动 798714
科研通“疑难数据库(出版商)”最低求助积分说明 758503