清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Abstract 899: Development of a deep learning model for cell type mapping in colorectal cancer using H&E images leveraging image-based spatial transcriptomics data

结直肠癌 癌症 转录组 人工智能 计算生物学 计算机科学 数据类型 图像(数学) 模式识别(心理学) 生物 医学 癌症研究 地图学 内科学 地理 遗传学 基因表达 基因 程序设计语言
作者
Seungho Cook,Dongjoo Lee,Myunghyun Lim,Jae Eun Lee,Daeseung Lee,Hyung‐Jun Im,Jung‐Soo Pyo,Kwon Joong Na,Hongyoon Choi
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 899-899
标识
DOI:10.1158/1538-7445.am2024-899
摘要

Abstract Purpose The tumor microenvironment (TME) is crucial in colorectal cancer as it influences disease progression, treatment response, and patient outcomes, providing valuable insights for personalized therapies and prognostic assessments. Here, we have developed a deep learning model by integrating hematoxylin and eosin (H&E) stained images of colorectal cancer and image-based spatial transcriptomics (Xenium) to infer spatial mapping of cell types in TME only using H&E images. Methods A total of 30 H&E images of colorectal cancer obtained by tissue microarray were registered with image-based spatial transcriptomics data (Xenium). Utilizing a Variational Autoencoder (VAE) based model and leveraging reference single-cell data enables the acquisition of cell types for individual cells in image-based spatial transcriptomics. A convolutional neural network (CNN) model was developed using H&E image as inputs to predict cell types in H&E-stained tissue image patches of colorectal cancer collected from various patients. The model also estimated the cell types from H&E-stained whole slide tissue image of colorectal cancer of The Cancer Genome Atlas (TCGA-COAD). Results The accuracy of the model's predictions for cell types using H&E image patches was notably high and exhibited a significant concordance with the results obtained through the validation. The Intersection over Union (IoU) metric for image segmentation indicated a value of 0.66 for epithelial cells and 0.44 for TNK cells. The output of deep learning model for epithelial cells and T/NK cells from TCGA-COAD tissue images showed a correlation with human-labeled regions of cancer epithelium and immune cells. Conclusions Leveraging image-based spatial transcriptomics, we developed a deep learning model capable of discerning various cell types within the tumor microenvironment solely from H&E images. This clinically translatable approach is valuable for investigating tumor microenvironment to develop biomarkers associated with various cancer therapeutics particularly immuno-oncology drugs. This approach can yield objective deep learning-based models without human labels for characterizing the tumor microenvironment in single-cell resolution, particularly regarding spatial immune distribution. Citation Format: Seungho Cook, Dongjoo Lee, Myunghyun Lim, Jae Eun Lee, Daeseung Lee, Hyung-Jun Im, Jung-Soo Pyo, Kwon Joong Na, Hongyoon Choi. Development of a deep learning model for cell type mapping in colorectal cancer using H&E images leveraging image-based spatial transcriptomics data [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 899.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jimmy完成签到 ,获得积分10
13秒前
tutu发布了新的文献求助30
31秒前
上官若男应助科研通管家采纳,获得10
1分钟前
1分钟前
lyj完成签到 ,获得积分10
1分钟前
珍珠火龙果完成签到 ,获得积分10
1分钟前
蜜桃小丸子完成签到 ,获得积分10
1分钟前
haralee完成签到 ,获得积分10
2分钟前
如歌完成签到,获得积分10
2分钟前
认真的冬易完成签到 ,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
阿巴阿巴茶完成签到,获得积分20
3分钟前
英俊的铭应助tutu采纳,获得30
4分钟前
nenoaowu应助tutu采纳,获得30
5分钟前
slayers发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
鬼见愁应助tutu采纳,获得10
5分钟前
6分钟前
even完成签到 ,获得积分10
6分钟前
6分钟前
tutu发布了新的文献求助30
6分钟前
6分钟前
7分钟前
wwe完成签到,获得积分10
7分钟前
搜集达人应助科研通管家采纳,获得10
7分钟前
隐形静芙完成签到 ,获得积分10
7分钟前
7分钟前
午后狂睡完成签到 ,获得积分10
7分钟前
里工完成签到 ,获得积分10
8分钟前
mathmotive完成签到,获得积分10
8分钟前
8分钟前
9分钟前
昌莆完成签到 ,获得积分10
9分钟前
9分钟前
10分钟前
11分钟前
牛八先生完成签到,获得积分10
11分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4184607
求助须知:如何正确求助?哪些是违规求助? 3720260
关于积分的说明 11723712
捐赠科研通 3398899
什么是DOI,文献DOI怎么找? 1864956
邀请新用户注册赠送积分活动 922482
科研通“疑难数据库(出版商)”最低求助积分说明 834058