Integrated metabolomic and transcriptomic analysis reveals the mechanism of high polysaccharide content in tetraploid Dendrobium catenatum Lindl

代谢组学 多糖 化学 转录组 植物 食品科学 生物 色谱法 生物化学 基因 基因表达
作者
Yang Liu,Xingru Li,Xiaojing Zhang,Shan-De Duan,Shaowu Xue,Zehua Fan,Li-Hong Hao,Di-Ying Xiang,Duanfen Chen,Shan-Ce Niu
出处
期刊:Industrial Crops and Products [Elsevier]
卷期号:212: 118391-118391
标识
DOI:10.1016/j.indcrop.2024.118391
摘要

Dendrobium catenatum Lindl (Orchidaceae) has high medicinal and economic value. Unfortunately, industrially-cultivated D. catenatum exhibits inferior medicinal quality in comparison with wild-harvested plant materials. Previously, we produced tetraploid D. catenatum germplasm in order to increase the production of bioactive compounds. However, although tetraploid D. catenatum contains a higher polysaccharide content than diploid D. catenatum, the molecular mechanism is still unknown. In this study, the polysaccharide content of tetraploid D. catenatum stems and leaves was studied alongside a comprehensive transcriptomic and metabolomic analysis. Overall, tetraploid D. catenatum contained a higher polysaccharide content (stem: 30.93%, leaf: 23.28%) than diploid D. catenatum (stem: 17.93%, leaf: 15.28%). Further analyses of differential metabolites and genes were carried out, targeting genes related to polysaccharide synthesis, metabolism, regulation, and transport. Functional enrichment analysis showed that tetraploid plants were highly enriched in transport- and metabolism-related pathways. Specifically, CesA/Csl, SWEET, and BGLU gene family members were upregulated in tetraploid plants. The results of this study suggest that enhanced polysaccharide transport may be the key driver of increased polysaccharide content in tetraploid D. catenatum. These results provide a foundation for further studies aimed at resolving the molecular mechanism of high polysaccharide content in tetraploid D. catenatum, as well as a theoretical basis for the breeding of new D. catenatum varieties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助pacify采纳,获得10
1秒前
1秒前
1秒前
2秒前
3秒前
4秒前
4秒前
jjy发布了新的文献求助10
5秒前
汉堡包应助吴龙采纳,获得10
6秒前
QI发布了新的文献求助10
6秒前
伶俐的可兰完成签到,获得积分10
7秒前
8秒前
郭生发布了新的文献求助10
8秒前
11秒前
11秒前
GODB1ACK应助shanchuan采纳,获得10
12秒前
曾经的曼巴完成签到,获得积分10
13秒前
离个大谱发布了新的文献求助10
13秒前
16秒前
Lucas应助jusser采纳,获得10
17秒前
哟西发布了新的文献求助10
18秒前
18秒前
来自二教的神秘力量完成签到,获得积分10
19秒前
离个大谱完成签到,获得积分10
20秒前
大模型应助壮观以松采纳,获得10
22秒前
西柚完成签到 ,获得积分10
24秒前
jun发布了新的文献求助10
24秒前
kouyue完成签到,获得积分10
25秒前
26秒前
29秒前
29秒前
顾矜应助慢慢来帖子采纳,获得10
29秒前
29秒前
kouyue发布了新的文献求助10
31秒前
31秒前
隐形曼青应助tori采纳,获得10
31秒前
keke发布了新的文献求助10
33秒前
34秒前
巢周舟发布了新的文献求助10
35秒前
35秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2422479
求助须知:如何正确求助?哪些是违规求助? 2111686
关于积分的说明 5346219
捐赠科研通 1839196
什么是DOI,文献DOI怎么找? 915538
版权声明 561205
科研通“疑难数据库(出版商)”最低求助积分说明 489669