Tribo-informatics approach to predict wear and friction coefficient of Mg/Si3N4 composites using machine learning techniques

摩擦学 磨损(机械) 摩擦学 复合材料 分层(地质) 材料科学 磨料 润滑性 俯冲 构造学 生物 古生物学
作者
Mahammod Babar Pasha,R.N. Rao,Syed Ismail,Manoj Gupta,P. Syam Prasad
出处
期刊:Tribology International [Elsevier BV]
卷期号:196: 109696-109696 被引量:16
标识
DOI:10.1016/j.triboint.2024.109696
摘要

The demand for lightweight, high-performance materials has driven significant advancements in magnesium-based materials. However, their practical implementation faces challenges, primarily due to their low wear resistance, especially in industries like automotive, where weight reduction is vital for fuel efficiency. Furthermore, the process of fabricating and assessing wear behavior incurs time and cost constraints. In light of this, machine learning techniques have emerged as a crucial tool for predicting the mechanical properties, wear characteristics, and tribological performance of diverse materials, including magnesium and its composites. Accordingly, the present study aims to integrate experimental results with machine learning techniques. The objective is to predict the wear rate and friction coefficient of Mg/Si3N4 nanocomposites, thus optimizing material design and manufacturing for superior wear performance. Nanocomposites are fabricated through ultrasonic-assisted stir casting, and a dataset of 120 data points is collected using a pin-on-disc tribometer under dry sliding conditions. Five supervised machine learning regression models are employed to predict wear rate and coefficient of friction, with hyperparameter tuning for a fair comparison. Results are evaluated using various statistical metrics, identifying the most effective model for accurate wear behavior prediction. The study also demonstrates improved wear resistance and lower friction coefficients in nanocomposites compared to pure magnesium. This is attributed to the even distribution of Si3N4 nanoparticles and strong interfacial bonding with the matrix. The presence of a mechanically mixed layer further enhances wear resistance under high loads and speeds. Five wear modes are identified, including abrasion, oxidation, adhesion, delamination, and plastic deformation, providing valuable insights into the wear mechanisms. A comprehensive wear map facilitates a deeper understanding of wear behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼医生完成签到 ,获得积分10
刚刚
keran完成签到,获得积分20
1秒前
qqaeao完成签到,获得积分10
5秒前
HM发布了新的文献求助10
5秒前
Yuzuru_gyq完成签到 ,获得积分10
5秒前
LYQ完成签到 ,获得积分10
6秒前
bu完成签到,获得积分10
9秒前
bill完成签到,获得积分10
10秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
11秒前
abby完成签到,获得积分20
11秒前
够了完成签到 ,获得积分10
13秒前
silence完成签到,获得积分10
13秒前
Meteor636完成签到 ,获得积分10
13秒前
坦率雪枫完成签到 ,获得积分10
18秒前
御风完成签到,获得积分10
19秒前
Skywalk满天星完成签到,获得积分10
21秒前
求知小生完成签到,获得积分10
23秒前
123mmmm发布了新的文献求助10
24秒前
xdc完成签到,获得积分10
26秒前
霓娜酱完成签到 ,获得积分10
29秒前
Tin啊呀呀完成签到 ,获得积分10
29秒前
30秒前
陶醉的翠霜完成签到 ,获得积分10
30秒前
feng完成签到,获得积分10
32秒前
ygl0217发布了新的文献求助10
34秒前
诺亚方舟哇哈哈完成签到 ,获得积分0
34秒前
我是老大应助acuter采纳,获得10
35秒前
是真的完成签到 ,获得积分10
39秒前
康谨完成签到 ,获得积分10
39秒前
小赞完成签到,获得积分10
40秒前
曾泳钧完成签到,获得积分10
40秒前
chenying完成签到 ,获得积分0
45秒前
li完成签到,获得积分20
48秒前
闪闪秋寒完成签到 ,获得积分10
49秒前
guoxingliu完成签到,获得积分10
52秒前
54秒前
伍寒烟完成签到,获得积分10
54秒前
栗子Liz发布了新的文献求助30
57秒前
kehe!完成签到 ,获得积分0
58秒前
小米稀饭完成签到 ,获得积分10
58秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4001432
求助须知:如何正确求助?哪些是违规求助? 3540786
关于积分的说明 11278733
捐赠科研通 3278724
什么是DOI,文献DOI怎么找? 1808174
邀请新用户注册赠送积分活动 884376
科研通“疑难数据库(出版商)”最低求助积分说明 810291