亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Cross-modal credibility modelling for EEG-based multimodal emotion recognition

模式 计算机科学 模态(人机交互) 可靠性 人工智能 脑电图 情态动词 刺激形态 机器学习 成对比较 模式识别(心理学) 感觉系统 认知心理学 心理学 化学 政治学 高分子化学 法学 社会科学 精神科 社会学
作者
Yuzhe Zhang,Huan Liu,Di Wang,Dalin Zhang,Tianyu Lou,Qinghua Zheng,Chai Quek
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (2): 026040-026040 被引量:2
标识
DOI:10.1088/1741-2552/ad3987
摘要

Abstract Objective. The study of emotion recognition through electroencephalography (EEG) has garnered significant attention recently. Integrating EEG with other peripheral physiological signals may greatly enhance performance in emotion recognition. Nonetheless, existing approaches still suffer from two predominant challenges: modality heterogeneity, stemming from the diverse mechanisms across modalities, and fusion credibility, which arises when one or multiple modalities fail to provide highly credible signals. Approach. In this paper, we introduce a novel multimodal physiological signal fusion model that incorporates both intra-inter modality reconstruction and sequential pattern consistency, thereby ensuring a computable and credible EEG-based multimodal emotion recognition. For the modality heterogeneity issue, we first implement a local self-attention transformer to obtain intra-modal features for each respective modality. Subsequently, we devise a pairwise cross-attention transformer to reveal the inter-modal correlations among different modalities, thereby rendering different modalities compatible and diminishing the heterogeneity concern. For the fusion credibility issue, we introduce the concept of sequential pattern consistency to measure whether different modalities evolve in a consistent way. Specifically, we propose to measure the varying trends of different modalities, and compute the inter-modality consistency scores to ascertain fusion credibility. Main results. We conduct extensive experiments on two benchmarked datasets (DEAP and MAHNOB-HCI) with the subject-dependent paradigm. For the DEAP dataset, our method improves the accuracy by 4.58%, and the F1 score by 0.63%, compared to the state-of-the-art baseline. Similarly, for the MAHNOB-HCI dataset, our method improves the accuracy by 3.97%, and the F1 score by 4.21%. In addition, we gain much insight into the proposed framework through significance test, ablation experiments, confusion matrices and hyperparameter analysis. Consequently, we demonstrate the effectiveness of the proposed credibility modelling through statistical analysis and carefully designed experiments. Significance. All experimental results demonstrate the effectiveness of our proposed architecture and indicate that credibility modelling is essential for multimodal emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助Tiger采纳,获得10
29秒前
NexusExplorer应助风华正茂采纳,获得10
32秒前
44秒前
Tiger发布了新的文献求助10
52秒前
1分钟前
1分钟前
Tiger完成签到,获得积分10
1分钟前
喜看财经完成签到,获得积分10
1分钟前
Ara关注了科研通微信公众号
2分钟前
2分钟前
kbcbwb2002完成签到,获得积分10
2分钟前
2分钟前
风华正茂发布了新的文献求助10
2分钟前
爱桃子发布了新的文献求助10
2分钟前
孙燕应助风华正茂采纳,获得10
2分钟前
喜看财经发布了新的文献求助10
2分钟前
2分钟前
flj发布了新的文献求助10
2分钟前
2分钟前
生如夏花完成签到 ,获得积分10
2分钟前
所所应助小碗采纳,获得10
3分钟前
SCI完成签到,获得积分10
3分钟前
Yeung完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
单薄乐珍完成签到 ,获得积分0
4分钟前
AMENG完成签到,获得积分10
4分钟前
Ara发布了新的文献求助10
4分钟前
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
英姑应助ly采纳,获得10
5分钟前
5分钟前
ly发布了新的文献求助10
5分钟前
drhwang完成签到,获得积分10
5分钟前
sleet完成签到 ,获得积分10
6分钟前
6分钟前
mellow发布了新的文献求助30
6分钟前
6分钟前
Liangyong_Fu完成签到 ,获得积分10
7分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808017
求助须知:如何正确求助?哪些是违规求助? 3352716
关于积分的说明 10360094
捐赠科研通 3068739
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810348
科研通“疑难数据库(出版商)”最低求助积分说明 766033