已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Models for Predicting the Type and Outcome of Ureteral Stones Treatments

阿达布思 体外冲击波碎石术 朴素贝叶斯分类器 机器学习 支持向量机 决策树 输尿管 医学 人工智能 随机森林 多层感知器 计算机科学 外科 碎石术 人工神经网络
作者
Elahe Rashidi,Mostafa Langarizadeh,Mohammadjavad Sayadi,Mohsen Sarkarian
出处
期刊:Advanced Biomedical Research [Medknow]
卷期号:12 (1)
标识
DOI:10.4103/abr.abr_121_23
摘要

Kidney and ureter stones are the third pathologies in urological diseases. Less invasive treatments such as transureteral lithotripsy and extracorporeal shock wave lithotripsy are used to treat ureteral stones. Data mining has provided the possibility of improving decision-making in choosing the optimal treatment. In this paper predictive models for the detection of ureter stone treatment (first model) and its outcome (second model) is developed based on the patient's demographic, clinical, and laboratory factors.In this cross-sectional study a questionnaire was used to identify the most effective features in the predictive models, and Information on 440 patients was collected. The models were constructed using machine learning techniques (Multilayer perceptron, Classification, and regression tree, k-nearest neighbors, Support vector machine, Naïve Bayes classifier, Random Forest, and AdaBoost) in the Bigpro1 analytical system.Among the Holdout and K-fold cross-validation methods used, the Holdout method showed better performance. From the data-based balancing methods used in the second model, the Synthetic Minority oversampling technique showed better performance. Also, the AdaBoost algorithm had the best performance. In this algorithm, accuracy, sensitivity, specificity, precision, F- measure, and Area under the carve in the first model were 89%, 87%, 91%, 90%, 89%, and 94% respectively, and in the second model were 81%, 81%, 82%, 84%, 82%, and 85% respectively.The results were promising and showed that the data mining techniques could be a powerful assistant for urologists to predict a surgical outcome and also to choose an appropriate surgical treatment for removing ureter stones.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄毛虎完成签到 ,获得积分10
刚刚
刚刚
葡萄味的果茶完成签到 ,获得积分10
1秒前
sober发布了新的文献求助10
1秒前
天天快乐应助研友_n2Bkrn采纳,获得10
2秒前
阳阳阳完成签到 ,获得积分10
2秒前
绾妤完成签到 ,获得积分10
3秒前
非而者厚应助我爱亲柠檬采纳,获得10
3秒前
3秒前
4秒前
Xieyusen完成签到,获得积分10
5秒前
xx完成签到 ,获得积分10
6秒前
6秒前
loen完成签到,获得积分10
8秒前
akber123发布了新的文献求助10
9秒前
闪闪小小完成签到 ,获得积分10
10秒前
11秒前
完美芒果发布了新的文献求助10
11秒前
研友_n2Bkrn完成签到,获得积分10
12秒前
13秒前
14秒前
研友_n2Bkrn发布了新的文献求助10
16秒前
16秒前
科研通AI5应助sober采纳,获得10
18秒前
丁爽发布了新的文献求助10
18秒前
akber123完成签到,获得积分10
18秒前
遇上就这样吧给sbc的求助进行了留言
18秒前
我叫啥名字来着完成签到,获得积分10
19秒前
Hung完成签到,获得积分10
19秒前
will完成签到 ,获得积分10
23秒前
24秒前
酷波er应助dt采纳,获得10
26秒前
丁爽完成签到,获得积分20
30秒前
31秒前
lizhiqian2024发布了新的文献求助10
32秒前
犹豫的砖家完成签到,获得积分10
32秒前
33秒前
34秒前
方班术完成签到,获得积分10
36秒前
无奈的小虾米完成签到,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782583
求助须知:如何正确求助?哪些是违规求助? 3327975
关于积分的说明 10234029
捐赠科研通 3042957
什么是DOI,文献DOI怎么找? 1670372
邀请新用户注册赠送积分活动 799680
科研通“疑难数据库(出版商)”最低求助积分说明 758931