Urban-rural differences in key factors of depressive symptoms among Chinese older adults based on random forest model

钥匙(锁) 随机森林 萧条(经济学) 心理学 老年学 抑郁症状 医学 精神科 认知 计算机科学 计算机安全 机器学习 经济 宏观经济学
作者
Jun Wang,Yiwen Wang,Shufeng Chen,Tiantian Fu,Guoxiao Sun
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:344: 292-300 被引量:9
标识
DOI:10.1016/j.jad.2023.10.017
摘要

Depression is a major challenge in the global healthy aging process, and exploring the key factors of depression in urban and rural older adults is essential for differentiated and precise interventions.To explore the urban-rural differences and key influencing factors of depressive symptoms among Chinese older adults.The data of 5267 older adults were obtained from the China Health and Retirement Longitudinal Survey (CHARLS2018). Random forest model and logistic regression were used to analyze the key factors influencing depressive symptoms 19 variables.The detection rate of depressive symptoms in older adults was 31.0 %, with 22.3 % and 34.8 % in urban and rural areas, respectively. Education, self-rated health, self-rated pain, and self-rated vision were common factors. Physical activity (OR = 0.716 for Moderate PA), social activity (OR = 0.671 for social activity), and self-rated hearing (OR = 0.602 for good) were key factors specific to urban older adults, and alcohol consumption (OR = 0.716 for drinking more than once a month) and marital status (OR = 0.689 for cohabitation) were key factors specific to depressive symptoms in rural older adults (all P < 0.05).Cross-sectional data cannot reflect dynamic processes among variables; The cultural background might affect the cross-cultural validity of the study.The key factors of depressive symptoms among older adults in urban and rural areas differed, which provides priority and references for differential prevention and precise intervention of depressive symptoms to promote the process of healthy aging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wan完成签到,获得积分10
1秒前
Wang发布了新的文献求助20
2秒前
finn发布了新的文献求助10
2秒前
科研通AI5应助左丘酬海采纳,获得30
4秒前
Sindy发布了新的文献求助10
4秒前
DaDA完成签到 ,获得积分10
5秒前
呆萌的太阳完成签到 ,获得积分10
7秒前
Jozee发布了新的文献求助10
9秒前
13秒前
14秒前
小许完成签到 ,获得积分10
15秒前
完美世界应助JTB采纳,获得10
15秒前
16秒前
20秒前
研友_nEoEy8完成签到,获得积分10
20秒前
踏实寄风发布了新的文献求助10
21秒前
犹豫千筹完成签到,获得积分10
21秒前
科研通AI5应助断章采纳,获得10
22秒前
岑晓冰完成签到 ,获得积分10
24秒前
高兴冰淇淋完成签到,获得积分10
25秒前
27秒前
Werner完成签到 ,获得积分10
27秒前
28秒前
曼联名宿马奎尔完成签到,获得积分10
29秒前
断章完成签到,获得积分10
30秒前
31秒前
百里盼山发布了新的文献求助10
31秒前
34秒前
35秒前
酷波er应助百里盼山采纳,获得10
35秒前
Akim应助京京采纳,获得10
36秒前
断章发布了新的文献求助10
36秒前
Zhjie126完成签到,获得积分10
37秒前
37秒前
枫七完成签到,获得积分10
38秒前
华仔应助土豆侠采纳,获得10
40秒前
科研小民工应助专注的安卉采纳,获得200
40秒前
42秒前
45秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783103
求助须知:如何正确求助?哪些是违规求助? 3328427
关于积分的说明 10236544
捐赠科研通 3043550
什么是DOI,文献DOI怎么找? 1670558
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119