Mapping tropical forest degradation with deep learning and Planet NICFI data

森林退化 登录中 植被(病理学) 遥感 环境科学 下层林 卫星图像 土地退化 雨林 采样(信号处理) 森林砍伐(计算机科学) 像素 林业 地理 计算机科学 人工智能 医学 考古 病理 天蓬 农业 程序设计语言 植物 滤波器(信号处理) 计算机视觉 生物
作者
Ricardo Dalagnol,Fabien Wagner,Lênio Soares Galvão,Daniel Braga,Fiona Osborn,Le Bienfaiteur Sagang,Polyanna da Conceição Bispo,Matthew Payne,Celso H. L. Silva,Samuel Favrichon,Vinícius Silgueiro,Liana O. Anderson,Luiz E. O. C. Aragão,Rasmus Fensholt,Martin Brandt,Philipe Ciais,Sassan Saatchi
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:298: 113798-113798 被引量:39
标识
DOI:10.1016/j.rse.2023.113798
摘要

Tropical rainforests from the Brazilian Amazon are frequently degraded by logging, fire, edge effects and minor unpaved roads. However, mapping the extent of degradation remains challenging because of the lack of frequent high-spatial resolution satellite observations, occlusion of understory disturbances, quick recovery of leafy vegetation, and limitations of conventional reflectance-based remote sensing techniques. Here, we introduce a new approach to map forest degradation caused by logging, fire, and road construction based on deep learning (DL), henceforth called DL-DEGRAD, using very high spatial (4.77 m) and bi-annual to monthly temporal resolution of the Planet NICFI imagery. We applied DL-DEGRAD model over forests of the state of Mato Grosso in Brazil to map forest degradation with attributions from 2016 to 2021 at six-month intervals. A total of 73,744 images (256 × 256 pixels in size) were visually interpreted and manually labeled with three semantic classes (logging, fire, and roads) to train/validate a U-Net model. We predicted the three classes over the study area for all dates, producing accumulated degradation maps biannually. Estimates of accuracy and areas of degradation were performed using a probability design-based stratified random sampling approach (n = 2678 samples) and compared it with existing operational data products at the state level. DL-DEGRAD performed significantly better than all other data products in mapping logging activities (F1-score = 68.9) and forest fire (F1-score = 75.6) when compared with the Brazil's national maps (SIMEX, DETER, MapBiomas Fire) and global products (UMD-GFC, TMF, FireCCI, FireGFL, GABAM, MCD64). Pixel-based spatial comparison of degradation areas showed the highest agreement with DETER and SIMEX as Brazil official data products derived from visual interpretation of Landsat imagery. The U-Net model applied to NICFI data performed as closely to a trained human delineation of logged and burned forests, suggesting the methodology can readily scale up the mapping and monitoring of degraded forests at national to regional scales. Over the state of Mato Grosso, the combined effects of logging and fire are degrading the remaining intact forests at an average rate of 8443 km2 year−1 from 2017 to 2021. In 2020, a record degradation area of 13,294 km2 was estimated from DL-DEGRAD, which was two times the areas of deforestation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助KKKZ采纳,获得10
刚刚
在水一方应助qd采纳,获得10
1秒前
Xieyusen完成签到,获得积分10
2秒前
852应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
打卡下班应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
故意的靳完成签到,获得积分10
3秒前
我是老大应助科研通管家采纳,获得30
3秒前
地震学牛马完成签到,获得积分10
3秒前
YamDaamCaa应助科研通管家采纳,获得30
4秒前
打卡下班应助科研通管家采纳,获得10
4秒前
4秒前
boldhammer发布了新的文献求助10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
YamDaamCaa应助科研通管家采纳,获得30
4秒前
YamDaamCaa应助科研通管家采纳,获得30
4秒前
大模型应助科研通管家采纳,获得10
4秒前
4秒前
5秒前
5秒前
研友_ngqb28完成签到,获得积分10
5秒前
Kiki完成签到,获得积分10
6秒前
852应助青岚采纳,获得10
6秒前
dq1992发布了新的文献求助10
8秒前
上官若男应助读书的时候采纳,获得10
10秒前
今后应助漂亮的千万采纳,获得10
10秒前
解耷发布了新的文献求助20
12秒前
jingtanhao发布了新的文献求助10
12秒前
啊咧完成签到,获得积分10
12秒前
12关闭了12文献求助
13秒前
14秒前
14秒前
17秒前
qd发布了新的文献求助10
18秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097565
求助须知:如何正确求助?哪些是违规求助? 3635255
关于积分的说明 11522834
捐赠科研通 3345513
什么是DOI,文献DOI怎么找? 1838684
邀请新用户注册赠送积分活动 906224
科研通“疑难数据库(出版商)”最低求助积分说明 823497