亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Immunotherapy Efficacy Prediction for Non-Small Cell Lung Cancer Using Multi-View Adaptive Weighted Graph Convolutional Networks

计算机科学 图形 免疫疗法 肺癌 卷积(计算机科学) 人工智能 机器学习 癌症 医学 理论计算机科学 肿瘤科 人工神经网络 内科学
作者
Qiong Wu,Jun Wang,Zongqiong Sun,Lei Xiao,Wenhao Ying,Jun Shi
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (11): 5564-5575 被引量:3
标识
DOI:10.1109/jbhi.2023.3309840
摘要

Immunotherapy is an effective way to treat non-small cell lung cancer (NSCLC). The efficacy of immunotherapy differs from person to person and may cause side effects, making it important to predict the efficacy of immunotherapy before surgery. Radiomics based on machine learning has been successfully used to predict the efficacy of NSCLC immunotherapy. However, most studies only considered the radiomic features of the individual patient, ignoring the inter-patient correlations. Besides, they usually concatenated different features as the input of a single-view model, failing to consider the complex correlation among features of multiple types. To this end, we propose a multi-view adaptive weighted graph convolutional network (MVAW-GCN) for the prediction of NSCLC immunotherapy efficacy. Specifically, we group the radiomic features into several views according to the type of the fitered images they extracted from. We construct a graph in each view based on the radiomic features and phenotypic information. An attention mechanism is introduced to automatically assign weights to each view. Considering the view-shared and view-specific knowledge of radiomic features, we propose separable graph convolution that decomposes the output of the last convolution layer into two components, i.e., the view-shared and view-specific outputs. We maximize the consistency and enhance the diversity among different views in the learning procedure. The proposed MVAW-GCN is evaluated on 107 NSCLC patients, including 52 patients with valid efficacy and 55 patients with invalid efficacy. Our method achieved an accuracy of 77.27% and an area under the curve (AUC) of 0.7780, indicating its effectiveness in NSCLC immunotherapy efficacy prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wise111发布了新的文献求助30
10秒前
ppppppp_76完成签到 ,获得积分10
13秒前
45秒前
竹子关注了科研通微信公众号
59秒前
有热心愿意完成签到,获得积分10
1分钟前
1分钟前
充电宝应助科研通管家采纳,获得30
1分钟前
竹子发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI2S应助Wei采纳,获得10
2分钟前
3分钟前
华仔应助科研通管家采纳,获得10
3分钟前
3分钟前
Jasper应助twk采纳,获得10
4分钟前
andrele应助科研通管家采纳,获得10
5分钟前
乾坤侠客LW完成签到,获得积分10
5分钟前
5分钟前
暖暖完成签到,获得积分10
5分钟前
北辰zdx完成签到,获得积分10
6分钟前
xiaxia关注了科研通微信公众号
6分钟前
cdercder应助北辰zdx采纳,获得30
6分钟前
xiaxia完成签到,获得积分10
6分钟前
激动的似狮完成签到,获得积分10
6分钟前
Banana完成签到,获得积分20
6分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
7分钟前
小二郎应助科研通管家采纳,获得10
7分钟前
壮观的谷冬完成签到 ,获得积分10
7分钟前
打打应助XX采纳,获得10
8分钟前
XX完成签到,获得积分10
8分钟前
8分钟前
8分钟前
站我发布了新的文献求助10
8分钟前
CipherSage应助站我采纳,获得10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
LRxxx完成签到 ,获得积分10
9分钟前
9分钟前
科研通AI5应助y234j788采纳,获得10
9分钟前
秀丽焦完成签到 ,获得积分10
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281976
捐赠科研通 3053482
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468