Deep Convolutional Neural Networks for Automated Butterfly Species Recognition and Classification

卷积神经网络 计算机科学 蝴蝶 鉴定(生物学) 宜居性 人工智能 生物多样性 机器学习 生态学 生物 天体物理学 行星 物理
作者
Thatte Surabhi,Bhoite Sachin,Chaudhari Advait
标识
DOI:10.1109/icirca57980.2023.10220696
摘要

In this research paper, we propose the use of Deep Convolutional Neural Networks (CNNs) a deep learning (DL) technique for accurate and efficient recognition and classification of butterfly species based on their visual features and patterns. Automated butterfly species recognition and classification play a vital role in biodiversity studies, ecological monitoring, and conservation efforts. The biodiversity of any region relies on habitability of that region for various species. Understanding of geographical distribution of rare and endangered species like butterflies and others can be considered as an important aspect for ensuring sustainable conservation of ecology. They can be useful in predicting climatic condition changes based on the regions supporting their habitability. Also tracking the migration pattern can be useful information for supporting ecological development. This study is focused specifically to automate the classification of butterfly species like Tigers and Emigrants category, since they are more prevalent in the Indian region. This study can be considered a probabilistic data driven approach, as we have curated imaging dataset specific only to the Indian regions. This study used techniques like web scrapping to gather and curate imaging dataset. In this study application of CNN based method is analyzed. The overall performance of CNN is approximately 88% which is comparable to other automatic classification techniques reported in literature. Thus, it can be concluded that application of deep CNNs for automated butterfly species recognition offers promising prospects for efficient and accurate identification in biodiversity research. By automating the identification process, this technology can streamline data collection and analysis, supporting ecological studies, conservation efforts, and the understanding of butterfly populations, their migration pattern, their habitats, and even new species evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助未来的闫院士采纳,获得10
刚刚
学术通zzz发布了新的文献求助10
1秒前
SciGPT应助绥遇则安采纳,获得10
1秒前
汀宁发布了新的文献求助20
1秒前
ma发布了新的文献求助10
2秒前
cindy发布了新的文献求助10
2秒前
6秒前
NexusExplorer应助Lion采纳,获得10
6秒前
姜露萍完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
情怀应助忧心的冬天采纳,获得10
8秒前
cindy完成签到,获得积分10
8秒前
9秒前
不凡发布了新的文献求助10
11秒前
潇潇发布了新的文献求助10
13秒前
jiwen发布了新的文献求助10
13秒前
chen完成签到,获得积分10
13秒前
万能图书馆应助Ultraman采纳,获得50
14秒前
14秒前
14秒前
lll发布了新的文献求助20
16秒前
一一发布了新的文献求助10
17秒前
李健的小迷弟应助周周周采纳,获得10
17秒前
19秒前
李国民发布了新的文献求助20
20秒前
卢丹丹发布了新的文献求助10
20秒前
NexusExplorer应助..采纳,获得10
20秒前
棠真应助yiruwang采纳,获得10
21秒前
安静的大白菜完成签到,获得积分20
23秒前
桐桐应助飞飞飞采纳,获得10
24秒前
Fine完成签到,获得积分10
24秒前
25秒前
liudongjun发布了新的文献求助10
26秒前
26秒前
nenoaowu发布了新的文献求助10
27秒前
韩霖发布了新的文献求助10
29秒前
30秒前
兴奋的乐巧完成签到,获得积分10
32秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818939
求助须知:如何正确求助?哪些是违规求助? 3362015
关于积分的说明 10414983
捐赠科研通 3080315
什么是DOI,文献DOI怎么找? 1694152
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768337