Deep Convolutional Neural Networks for Automated Butterfly Species Recognition and Classification

卷积神经网络 计算机科学 蝴蝶 鉴定(生物学) 宜居性 人工智能 生物多样性 机器学习 生态学 生物 天体物理学 行星 物理
作者
Thatte Surabhi,Bhoite Sachin,Chaudhari Advait
标识
DOI:10.1109/icirca57980.2023.10220696
摘要

In this research paper, we propose the use of Deep Convolutional Neural Networks (CNNs) a deep learning (DL) technique for accurate and efficient recognition and classification of butterfly species based on their visual features and patterns. Automated butterfly species recognition and classification play a vital role in biodiversity studies, ecological monitoring, and conservation efforts. The biodiversity of any region relies on habitability of that region for various species. Understanding of geographical distribution of rare and endangered species like butterflies and others can be considered as an important aspect for ensuring sustainable conservation of ecology. They can be useful in predicting climatic condition changes based on the regions supporting their habitability. Also tracking the migration pattern can be useful information for supporting ecological development. This study is focused specifically to automate the classification of butterfly species like Tigers and Emigrants category, since they are more prevalent in the Indian region. This study can be considered a probabilistic data driven approach, as we have curated imaging dataset specific only to the Indian regions. This study used techniques like web scrapping to gather and curate imaging dataset. In this study application of CNN based method is analyzed. The overall performance of CNN is approximately 88% which is comparable to other automatic classification techniques reported in literature. Thus, it can be concluded that application of deep CNNs for automated butterfly species recognition offers promising prospects for efficient and accurate identification in biodiversity research. By automating the identification process, this technology can streamline data collection and analysis, supporting ecological studies, conservation efforts, and the understanding of butterfly populations, their migration pattern, their habitats, and even new species evolution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小海豚发布了新的文献求助10
3秒前
4秒前
Nicole完成签到,获得积分10
5秒前
filter完成签到,获得积分10
6秒前
8秒前
大方太清完成签到 ,获得积分10
8秒前
wang完成签到,获得积分10
8秒前
zhouzhou发布了新的文献求助20
8秒前
jsdiohfsiodhg完成签到,获得积分10
9秒前
爆米花应助SYxYouth采纳,获得10
10秒前
李超杰应助都可以采纳,获得20
10秒前
李超杰应助都可以采纳,获得20
10秒前
大方元风发布了新的文献求助10
10秒前
湖畔望月寒完成签到,获得积分20
14秒前
JamesPei应助胡萝卜采纳,获得10
15秒前
赘婿应助小海豚采纳,获得10
15秒前
青牛完成签到 ,获得积分10
16秒前
科研闲人完成签到,获得积分10
16秒前
zyn完成签到,获得积分10
19秒前
华仔应助苍山负雪采纳,获得10
21秒前
简让完成签到 ,获得积分10
22秒前
25秒前
传奇3应助杏仁采纳,获得10
26秒前
江姜酱先生完成签到,获得积分10
28秒前
小Q完成签到,获得积分20
28秒前
谨慎灭龙发布了新的文献求助20
30秒前
king11111完成签到,获得积分10
31秒前
zyn发布了新的文献求助10
31秒前
32秒前
32秒前
34秒前
35秒前
林林发布了新的文献求助10
38秒前
38秒前
张淼发布了新的文献求助10
38秒前
41秒前
43秒前
zsw完成签到,获得积分10
44秒前
44秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Ene—X Compounds (X = S, Se, Te, N, P) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4128570
求助须知:如何正确求助?哪些是违规求助? 3665742
关于积分的说明 11598298
捐赠科研通 3364763
什么是DOI,文献DOI怎么找? 1848899
邀请新用户注册赠送积分活动 912724
科研通“疑难数据库(出版商)”最低求助积分说明 828134