Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model

希尔伯特-黄变换 风力发电 均方误差 风速 随机性 风电预测 系列(地层学) 计算机科学 算法 时间序列 相关系数 数学 电力系统 统计 功率(物理) 气象学 能量(信号处理) 工程类 电气工程 物理 量子力学 古生物学 生物
作者
Dongdong Zhang,Baian Chen,Hongyu Zhu,Hui Hwang Goh,Yunxuan Dong,Thomas Wu
出处
期刊:Energy [Elsevier BV]
卷期号:285: 128762-128762 被引量:69
标识
DOI:10.1016/j.energy.2023.128762
摘要

In order to solve the security threat brought by the volatility and randomness of large-scale distributed wind power, this paper proposed a wind power prediction model which integrates two-layer decomposition and deep learning, effectively realizing the accurate prediction of wind power series with non-stationary characteristics. Initially, pearson correlation coefficient (PCC) is employed to identify primary meteorological variables as input series. Second, the wind power series are smoothed by implementing complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), and then all subseries are decomposed and obtained by utilizing empirical wavelet transform (EWT) for the components with the highest complexity. Subsequently, hidden information related to wind speed, wind direction, and wind power series are extracted through the bidirectional temporal convolutional network (BiTCN), and the obtained information is fed into a bidirectional long short-term memory network (BiLSTM) optimized by attention mechanism for prediction. Finally, the predicted values of all components are summed to derive the final prediction results. In addition, the significant advantages of the prediction model in this paper are verified by five comparison experiments. The mean absolute error (MAE) and root mean square error (RMSE) of the model's one-step prediction in the January dataset are 2.1647 and 2.8456, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
问津完成签到,获得积分20
刚刚
善学以致用应助HJJHJH采纳,获得10
3秒前
3秒前
3秒前
syn发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
tao_blue发布了新的文献求助10
8秒前
8秒前
CipherSage应助核桃采纳,获得30
9秒前
旋旋发布了新的文献求助10
10秒前
孙燕应助体贴的荆采纳,获得30
11秒前
11秒前
jiaping发布了新的文献求助10
11秒前
落后凝莲发布了新的文献求助10
12秒前
cheng zou完成签到,获得积分10
14秒前
kk发布了新的文献求助10
14秒前
tao_blue完成签到,获得积分10
15秒前
沉静野狼完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
Ava应助猪猪hero采纳,获得10
18秒前
大个应助落后凝莲采纳,获得10
19秒前
19秒前
玉1完成签到,获得积分10
21秒前
鸣蜩阿六完成签到,获得积分10
22秒前
23秒前
24秒前
25秒前
26秒前
26秒前
27秒前
kk完成签到,获得积分10
27秒前
jess发布了新的文献求助10
28秒前
猪猪hero发布了新的文献求助10
29秒前
西瓜头发布了新的文献求助10
30秒前
上官若男应助adb采纳,获得10
30秒前
31秒前
饱满寻菡发布了新的文献求助10
31秒前
lzr发布了新的文献求助10
32秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3886703
求助须知:如何正确求助?哪些是违规求助? 3428918
关于积分的说明 10762970
捐赠科研通 3153936
什么是DOI,文献DOI怎么找? 1741281
邀请新用户注册赠送积分活动 840610
科研通“疑难数据库(出版商)”最低求助积分说明 785452