亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-informed neural networks for studying heat transfer in porous media

多孔介质 热传导 热导率 传热 热流密度 人工神经网络 工作(物理) 机器学习 计算机科学 人工智能 物理 材料科学 机械 多孔性 热力学 复合材料
作者
Jiaxuan Xu,Han Wei,Hua Bao
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:217: 124671-124671 被引量:30
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124671
摘要

Numerous efforts have been devoted to studying heat transfer problems in porous media. Physics-based models, numerical methods and experiments are commonly adopted to obtain the temperature and heat flux fields, along with effective thermophysical properties like effective thermal conductivity for heat conduction, which exert significant impact on analyzing the heat transfer efficiency in porous systems. Recently, using data-driven machine learning methods to predict temperature/heat flux fields and effective thermal conductivity of porous media has gained attention, demonstrating the potential to achieve higher accuracy than physics-based models while requiring less computational time than numerical methods. However, machine learning approaches are commonly restricted by the requirement for sufficient labeled training data, which can be difficult and time-consuming to acquire. In this work, we apply physics-informed neural networks to investigate heat conduction in porous media. We show that, without any labeled training data, accurate predictions for temperature/heat flux fields in porous media can be achieved. The obtained effective thermal conductivity values for an ensemble of porous media samples have an average relative error of only 2.49%. Compared with numerical calculations, a computation acceleration of 5 orders of magnitude has been achieved. Compared with data-driven machine learning methods, this method offers enhanced flexibility since no labeled data is required. Furthermore, we also illustrate that physics-informed neural networks can be easily extended to predict nonlinear heat conduction in porous media. Our work demonstrates that physics-informed neural networks are promising tools for studying heat conduction problems and can also be possibly extended to study other complex heat transfer problems in porous media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
实力不允许完成签到 ,获得积分10
5秒前
26秒前
31秒前
YifanWang应助科研通管家采纳,获得20
40秒前
李健应助13508104971采纳,获得10
1分钟前
1分钟前
满意人英完成签到,获得积分10
1分钟前
斯文的苡完成签到,获得积分10
2分钟前
2分钟前
001完成签到,获得积分10
2分钟前
滕皓轩完成签到 ,获得积分20
4分钟前
刘丰完成签到 ,获得积分10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得10
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
5分钟前
研友_VZG7GZ应助鲜艳的诗翠采纳,获得10
5分钟前
友好的白柏完成签到 ,获得积分10
6分钟前
李健的小迷弟应助Sandy采纳,获得10
6分钟前
人谷完成签到 ,获得积分10
6分钟前
人谷呀完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
7分钟前
华仔应助羽生结弦的馨馨采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
qqq完成签到,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
9分钟前
9分钟前
9分钟前
早睡一哥完成签到,获得积分10
9分钟前
002完成签到,获得积分10
9分钟前
包容的剑完成签到 ,获得积分10
9分钟前
9分钟前
003完成签到,获得积分10
9分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777624
求助须知:如何正确求助?哪些是违规求助? 3322988
关于积分的说明 10212874
捐赠科研通 3038350
什么是DOI,文献DOI怎么找? 1667372
邀请新用户注册赠送积分活动 798106
科研通“疑难数据库(出版商)”最低求助积分说明 758229