Deep Learning-Enabled, Detection of Rare Circulating Tumor Cell Clusters in Whole Blood Using Label-free, Flow Cytometry

流式细胞术 循环肿瘤细胞 体内 全血 细胞仪 癌症 生物 转移 内科学 医学 免疫学 生物技术
作者
Nilay Vora,Prashant Shekar,Michael Esmail,Abani Patra,Irene Georgakoudi
标识
DOI:10.1101/2023.08.01.551485
摘要

Metastatic tumors have poor prognoses for progression-free and overall survival for all cancer patients. Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are potential biomarkers of metastatic growth, with CTCCs representing an increased risk factor for metastasis. Current detection platforms are optimized for ex vivo detection of CTCs only. Microfluidic chips and size exclusion methods have been proposed for CTCC detection; however, they lack in vivo utility and real-time monitoring capability. Confocal backscatter and fluorescence flow cytometry (BSFC) has been used for label-free detection of CTCCs in whole blood based on machine learning (ML) enabled peak classification. Here, we expand to a deep-learning (DL) -based, peak detection and classification model to detect CTCCs in whole blood data. We demonstrate that DL-based BSFC has a low false alarm rate of 0.78 events/min with a high Pearson correlation coefficient of 0.943 between detected events and expected events. DL-based BSFC of whole blood maintains a detection purity of 72% and a sensitivity of 35.3% for both homotypic and heterotypic CTCCs starting at a minimum size of two cells. We also demonstrate through artificial spiking studies that DL-based BSFC is sensitive to changes in the number of CTCCs present in the samples and does not add variability in detection beyond the expected variability from Poisson statistics. The performance established by DL-based BSFC motivates its use for in vivo detection of CTCCs. Further developments of label-free BSFC to enhance throughput could lead to critical applications in the clinical detection of CTCCs and ex vivo isolation of CTCC from whole blood with minimal disruption and processing steps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
Steven发布了新的文献求助10
3秒前
river123完成签到,获得积分10
3秒前
JamesPei应助dennisysz采纳,获得10
4秒前
可爱的函函应助dennisysz采纳,获得10
4秒前
彭于晏应助dennisysz采纳,获得10
4秒前
Orange应助dennisysz采纳,获得10
4秒前
烟花应助dennisysz采纳,获得10
4秒前
ding应助dennisysz采纳,获得10
4秒前
汉堡包应助dennisysz采纳,获得10
4秒前
Ava应助dennisysz采纳,获得10
4秒前
善学以致用应助dennisysz采纳,获得10
4秒前
无花果应助dennisysz采纳,获得10
4秒前
4秒前
4秒前
若邻发布了新的文献求助10
6秒前
hansJAMA发布了新的文献求助10
7秒前
王博士完成签到,获得积分10
8秒前
Huang完成签到 ,获得积分0
9秒前
lkkkkkk发布了新的文献求助30
10秒前
12秒前
占万声完成签到,获得积分10
14秒前
俊逸十八完成签到 ,获得积分10
16秒前
17秒前
ding应助hansJAMA采纳,获得30
22秒前
23秒前
艺响天开发布了新的文献求助10
24秒前
贪玩的访风完成签到 ,获得积分10
27秒前
lkkkkkk完成签到,获得积分10
28秒前
Owen应助77采纳,获得10
29秒前
熊i发布了新的文献求助30
29秒前
qiyun96发布了新的文献求助10
34秒前
38秒前
77发布了新的文献求助10
41秒前
淡然白安发布了新的文献求助30
42秒前
科研通AI5应助自由的沅采纳,获得30
44秒前
深情安青应助77采纳,获得10
46秒前
orixero应助救驾来迟采纳,获得10
47秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777469
求助须知:如何正确求助?哪些是违规求助? 3322795
关于积分的说明 10211853
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667163
邀请新用户注册赠送积分活动 797990
科研通“疑难数据库(出版商)”最低求助积分说明 758133