Formation energy prediction of neutral single-atom impurities in 2D materials using tree-based machine learning

杂质 Atom(片上系统) 高能中性原子 能量(信号处理) 计算机科学 机器学习 材料科学 人工智能 原子物理学 物理 核物理学 等离子体 量子力学 并行计算
作者
Aniwat Kesorn,Rutchapon Hunkao,Cheewawut Na Talang,Chanaprom Cholsuk,Asawin Sinsarp,Tobias Vogl,Sujin Suwanna,Suraphong Yuma
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:5 (3): 035039-035039 被引量:2
标识
DOI:10.1088/2632-2153/ad66ae
摘要

Abstract We applied tree-based machine learning algorithms to predict the formation energy of impurities in 2D materials, where adsorbates and interstitial defects are investigated. Regression models based on random forest, gradient boosting regression, histogram-based gradient-boosting regression, and light gradient-boosting machine algorithms are employed for training, testing, cross validation, and blind testing. We utilized chemical features from fundamental properties of atoms and supplemented them with structural features from the interaction of the added chemical element with its neighboring host atoms via the Jacobi–Legendre (JL) polynomials. Overall, the prediction accuracy yields optimal MAE 0.518 , RMSE 1.14 , and R 2 0.855 . When trained separately, we obtained lower residual errors RMSE and MAE, and higher R 2 value for predicting the formation energy in the adsorbates than in the interstitial defects. In both cases, the inclusion of the structural features via the JL polynomials improves the prediction accuracy of the formation energy in terms of decreasing RMSE and MAE, and increasing R 2 . This work demonstrates the potential and application of physically meaningful features to obtain physical properties of impurities in 2D materials that otherwise would require higher computational cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nutliu完成签到,获得积分10
刚刚
mario完成签到,获得积分20
1秒前
1秒前
2秒前
bkagyin应助哈哈镜阿姐采纳,获得10
5秒前
5秒前
mario发布了新的文献求助10
6秒前
云水雾心发布了新的文献求助10
7秒前
西米关注了科研通微信公众号
8秒前
伶俐的颤发布了新的文献求助10
9秒前
12秒前
NEW发布了新的文献求助10
18秒前
21秒前
Hanoi347应助科研通管家采纳,获得10
23秒前
小不点应助科研通管家采纳,获得10
23秒前
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
orixero应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得10
23秒前
Hanoi347应助科研通管家采纳,获得30
23秒前
完美世界应助科研通管家采纳,获得10
23秒前
拼搏应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
小不点应助科研通管家采纳,获得10
23秒前
Josie应助科研通管家采纳,获得10
23秒前
拼搏应助科研通管家采纳,获得10
23秒前
我是老大应助科研通管家采纳,获得10
23秒前
科研通AI6应助科研通管家采纳,获得10
23秒前
在水一方应助科研通管家采纳,获得10
23秒前
赘婿应助科研通管家采纳,获得10
24秒前
Ava应助科研通管家采纳,获得10
24秒前
24秒前
24秒前
Lucas应助科研通管家采纳,获得10
24秒前
顾矜应助科研通管家采纳,获得10
24秒前
桐桐应助科研通管家采纳,获得10
24秒前
24秒前
我是老大应助科研通管家采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557972
求助须知:如何正确求助?哪些是违规求助? 4642937
关于积分的说明 14669867
捐赠科研通 4584431
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1489002
关于科研通互助平台的介绍 1459619