杂质
Atom(片上系统)
高能中性原子
能量(信号处理)
计算机科学
机器学习
材料科学
人工智能
原子物理学
物理
核物理学
等离子体
量子力学
并行计算
作者
Aniwat Kesorn,Rutchapon Hunkao,Cheewawut Na Talang,Chanaprom Cholsuk,Asawin Sinsarp,Tobias Vogl,Sujin Suwanna,Suraphong Yuma
标识
DOI:10.1088/2632-2153/ad66ae
摘要
Abstract We applied tree-based machine learning algorithms to predict the formation energy of impurities in 2D materials, where adsorbates and interstitial defects are investigated. Regression models based on random forest, gradient boosting regression, histogram-based gradient-boosting regression, and light gradient-boosting machine algorithms are employed for training, testing, cross validation, and blind testing. We utilized chemical features from fundamental properties of atoms and supplemented them with structural features from the interaction of the added chemical element with its neighboring host atoms via the Jacobi–Legendre (JL) polynomials. Overall, the prediction accuracy yields optimal MAE ≈ 0.518 , RMSE ≈ 1.14 , and R 2 ≈ 0.855 . When trained separately, we obtained lower residual errors RMSE and MAE, and higher R 2 value for predicting the formation energy in the adsorbates than in the interstitial defects. In both cases, the inclusion of the structural features via the JL polynomials improves the prediction accuracy of the formation energy in terms of decreasing RMSE and MAE, and increasing R 2 . This work demonstrates the potential and application of physically meaningful features to obtain physical properties of impurities in 2D materials that otherwise would require higher computational cost.
科研通智能强力驱动
Strongly Powered by AbleSci AI