亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HSIMAE: A Unified Masked Autoencoder With Large-Scale Pretraining for Hyperspectral Image Classification

高光谱成像 人工智能 自编码 计算机科学 模式识别(心理学) 深度学习 卷积神经网络 杠杆(统计) 像素 机器学习
作者
Yue Wang,Ming Wen,Hailiang Zhang,Jinyu Sun,Qiong Yang,Zhimin Zhang,Hongmei Lü
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 14064-14079 被引量:4
标识
DOI:10.1109/jstars.2024.3432743
摘要

With a spurt of progress in deep learning techniques, convolutional neural network-based and transformer-based methods have yielded impressive performance on the hyperspectral image (HSI) classification tasks. However, pixel-level manual annotation is time-consuming and laborious, and the small amount of labeled HSI data brings challenges to deep learning methods. Existing methods use carefully designed network architectures combined with self-supervised or semi-supervised learning to deal with the lack of training samples. Those methods were designed for specific datasets and often needed to tune hyperparameters on new datasets carefully. To tackle this problem, a unified HSI masked autoencoder framework was proposed for HSI classification. Different from existing works, the hyperspectral image masked autoencoder (HSIMAE) framework was pretrained on a large-scale unlabeled HSI dataset, named HSIHybrid, which contained a large amount of HSI data acquired by different sensors. First, to handle the different spectral ranges of HSIs, a group-wise PCA was applied to extract features of HSI spectra and transform them into fixed-length vectors. Then, a modified masked autoencoder was proposed for large-scale pretraining. It utilized separate spatial–spectral encoders followed by fusion blocks to learn spatial correlation and spectral correlation of HSI data. Finally, to leverage the unlabeled data of the target dataset, a dual-branch finetuning framework that used an extra unlabeled branch for mask modeling learning was introduced. Extensive experiments were conducted on four HSI datasets from different hyperspectral sensors. The results demonstrate the superiority of the proposed HSIMAE framework over the state-of-the-art methods, even with very few training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
acbear发布了新的文献求助50
7秒前
19秒前
19秒前
26秒前
追风完成签到,获得积分10
55秒前
lynn完成签到,获得积分10
1分钟前
火星完成签到 ,获得积分10
1分钟前
陆千万完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
puzhongjiMiQ完成签到,获得积分10
1分钟前
三个气的大门完成签到 ,获得积分10
1分钟前
乾坤侠客LW完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
CipherSage应助feng1235采纳,获得10
2分钟前
小白加油完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
兔图图完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
5分钟前
烟花应助Ni采纳,获得10
5分钟前
隐形曼青应助左白易采纳,获得10
5分钟前
5分钟前
Ni发布了新的文献求助10
5分钟前
LG完成签到,获得积分20
5分钟前
Ni完成签到 ,获得积分20
5分钟前
5分钟前
爱静静完成签到,获得积分0
5分钟前
彩虹儿发布了新的文献求助30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
5分钟前
科研通AI5应助andrele采纳,获得10
6分钟前
6分钟前
左白易发布了新的文献求助10
6分钟前
6分钟前
feng1235发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4142817
求助须知:如何正确求助?哪些是违规求助? 3679055
关于积分的说明 11627750
捐赠科研通 3372535
什么是DOI,文献DOI怎么找? 1852392
邀请新用户注册赠送积分活动 915180
科研通“疑难数据库(出版商)”最低求助积分说明 829675