Towards Open-World Recommendation with Knowledge Augmentation from Large Language Models

计算机科学 万维网 自然语言处理 数据科学
作者
Yunjia Xi,Weiwen Liu,Jianghao Lin,Xiaoling Cai,Hong Zhu,Jieming Zhu,Bo Chen,Ruiming Tang,Weinan Zhang,Yong Yu
标识
DOI:10.1145/3640457.3688104
摘要

Recommender system plays a vital role in various online services. However, its insulated nature of training and deploying separately within a specific closed domain limits its access to open-world knowledge. Recently, the emergence of large language models (LLMs) has shown promise in bridging this gap by encoding extensive world knowledge and demonstrating reasoning capabilities. Nevertheless, previous attempts to directly use LLMs as recommenders cannot meet the inference latency demand of industrial recommender systems. In this work, we propose an Open-World Knowledge Augmented Recommendation Framework with Large Language Models, dubbed KAR, to acquire two types of external knowledge from LLMs — the reasoning knowledge on user preferences and the factual knowledge on items. We introduce factorization prompting to elicit accurate reasoning on user preferences. The generated reasoning and factual knowledge are effectively transformed and condensed into augmented vectors by a hybrid-expert adaptor in order to be compatible with the recommendation task. The obtained vectors can then be directly used to enhance the performance of any recommendation model. We also ensure efficient inference by preprocessing and prestoring the knowledge from the LLM. Extensive experiments show that KAR significantly outperforms the state-of-the-art baselines and is compatible with a wide range of recommendation algorithms. We deploy KAR to Huawei's news and music recommendation platforms and gain a 7% and 1.7% improvement in the online A/B test, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wu完成签到,获得积分20
刚刚
虚幻的亦旋完成签到,获得积分10
1秒前
fzy发布了新的文献求助30
1秒前
2秒前
小骁同学完成签到,获得积分10
2秒前
东方客警完成签到,获得积分10
2秒前
美丽的裘完成签到,获得积分20
3秒前
3秒前
hai发布了新的文献求助10
3秒前
aprise完成签到 ,获得积分10
4秒前
4秒前
bobo完成签到,获得积分10
4秒前
米米完成签到,获得积分10
4秒前
5秒前
LUCKY发布了新的文献求助50
5秒前
5秒前
东方客警发布了新的文献求助10
5秒前
hh完成签到,获得积分10
5秒前
布丁完成签到,获得积分10
5秒前
蔓蔓完成签到,获得积分10
6秒前
boltos完成签到,获得积分10
6秒前
NexusExplorer应助义气的妙松采纳,获得10
6秒前
MchemG应助神秘人w采纳,获得10
7秒前
文艺从彤发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
CipherSage应助123123采纳,获得10
9秒前
晴小晴发布了新的文献求助10
10秒前
vdsvdkm完成签到,获得积分10
10秒前
ZIS发布了新的文献求助10
11秒前
鸢尾蓝完成签到,获得积分10
11秒前
11秒前
yan关闭了yan文献求助
11秒前
爱静静应助大橙子采纳,获得10
12秒前
So关闭了So文献求助
13秒前
eric888应助萧水白采纳,获得100
13秒前
虚心的芹发布了新的文献求助20
13秒前
13秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4093339
求助须知:如何正确求助?哪些是违规求助? 3632045
关于积分的说明 11511743
捐赠科研通 3342780
什么是DOI,文献DOI怎么找? 1837309
邀请新用户注册赠送积分活动 905012
科研通“疑难数据库(出版商)”最低求助积分说明 822852