Navigating Uncertainties in Machine Learning for Structural Dynamics: A Comprehensive Review of Probabilistic and Non-Probabilistic Approaches in Forward and Inverse Problems

概率逻辑 反向 逆动力学 动力学(音乐) 计算机科学 人工智能 概率相关模型 机器学习 算法的概率分析 数学 心理学 物理 几何学 教育学 运动学 经典力学
作者
Wang‐Ji Yan,Lin-Feng Mei,Jiang Mo,Costas Papadimitriou,Ka‐Veng Yuen,Michael Beer
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2408.08629
摘要

In the era of big data, machine learning (ML) has become a powerful tool in various fields, notably impacting structural dynamics. ML algorithms offer advantages by modeling physical phenomena based on data, even in the absence of underlying mechanisms. However, uncertainties such as measurement noise and modeling errors can compromise the reliability of ML predictions, highlighting the need for effective uncertainty awareness to enhance prediction robustness. This paper presents a comprehensive review on navigating uncertainties in ML, categorizing uncertainty-aware approaches into probabilistic methods (including Bayesian and frequentist perspectives) and non-probabilistic methods (such as interval learning and fuzzy learning). Bayesian neural networks, known for their uncertainty quantification and nonlinear mapping capabilities, are emphasized for their superior performance and potential. The review covers various techniques and methodologies for addressing uncertainties in ML, discussing fundamentals and implementation procedures of each method. While providing a concise overview of fundamental concepts, the paper refrains from in-depth critical explanations. Strengths and limitations of each approach are examined, along with their applications in structural dynamic forward problems like response prediction, sensitivity assessment, and reliability analysis, and inverse problems like system identification, model updating, and damage identification. Additionally, the review identifies research gaps and suggests future directions for investigations, aiming to provide comprehensive insights to the research community. By offering an extensive overview of both probabilistic and non-probabilistic approaches, this review aims to assist researchers and practitioners in making informed decisions when utilizing ML techniques to address uncertainties in structural dynamic problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
炎炎夏无声完成签到 ,获得积分10
1秒前
Swait完成签到,获得积分10
7秒前
司空天德完成签到,获得积分0
8秒前
落雪完成签到 ,获得积分10
8秒前
chenxiaofang完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
糕糕完成签到 ,获得积分10
13秒前
14秒前
虚心岂愈完成签到 ,获得积分10
18秒前
啊哈哈哈哈哈完成签到 ,获得积分10
20秒前
南风知我意完成签到,获得积分10
22秒前
清澈的爱只为中国完成签到 ,获得积分10
22秒前
灯座完成签到,获得积分10
23秒前
殷勤的涵梅完成签到 ,获得积分10
24秒前
luckweb完成签到,获得积分10
25秒前
和平完成签到 ,获得积分10
30秒前
我是老大应助健壮的绿凝采纳,获得10
30秒前
一粟的粉r完成签到 ,获得积分10
33秒前
简奥斯汀完成签到 ,获得积分10
34秒前
爱喝酸奶完成签到 ,获得积分10
36秒前
如泣草芥完成签到,获得积分0
38秒前
量子星尘发布了新的文献求助10
38秒前
xiaoyi完成签到 ,获得积分10
41秒前
9sun完成签到 ,获得积分10
41秒前
滴滴完成签到 ,获得积分10
46秒前
快乐学习每一天完成签到 ,获得积分10
47秒前
慢就是快完成签到 ,获得积分10
49秒前
情怀应助一个小胖子采纳,获得10
51秒前
人双山几文完成签到 ,获得积分10
56秒前
ccmxigua完成签到,获得积分10
56秒前
帅气代云完成签到 ,获得积分10
58秒前
L1完成签到 ,获得积分10
59秒前
HandsomeBoy完成签到 ,获得积分10
1分钟前
1分钟前
cyb1221完成签到 ,获得积分10
1分钟前
负责冰海完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
swordshine完成签到,获得积分0
1分钟前
马冬梅完成签到 ,获得积分10
1分钟前
熊泰山完成签到 ,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470504
求助须知:如何正确求助?哪些是违规求助? 4573333
关于积分的说明 14338338
捐赠科研通 4500410
什么是DOI,文献DOI怎么找? 2465771
邀请新用户注册赠送积分活动 1454070
关于科研通互助平台的介绍 1428758