q2-metnet: QIIME2 package to analyze 16S rRNA data via high-quality metabolic reconstructions of the human gut microbiota

16S核糖体RNA 生物 计算生物学 推论 核糖体RNA 肠道菌群 基因 计算机科学 遗传学 人工智能 生物化学
作者
Francesco Balzerani,Telmo Blasco,Sergio Pérez-Burillo,M. Pilar Francino,José Ángel Rufián‐Henares,Luis V. Valcárcel,Francisco J. Planes
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:40 (11)
标识
DOI:10.1093/bioinformatics/btae455
摘要

Abstract Motivation 16S rRNA gene sequencing is the most frequent approach for the characterization of the human gut microbiota. Despite different efforts in the literature, the inference of functional and metabolic interpretations from 16S rRNA gene sequencing data is still a challenging task. High-quality metabolic reconstructions of the human gut microbiota, such as AGORA and AGREDA, constitute a curated resource to improve functional inference from 16S rRNA data, but they are not typically integrated into standard bioinformatics tools. Results Here, we present q2-metnet, a QIIME2 plugin that enables the contextualization of 16S rRNA gene sequencing data into AGORA and AGREDA. In particular, based on relative abundances of taxa, q2-metnet determines normalized activity scores for the reactions and subsystems involved in the selected metabolic reconstruction. Using these scores, q2-metnet allows the user to conduct differential activity analysis for reactions and subsystems, as well as exploratory analysis using PCA and hierarchical clustering. We apply q2-metnet to a dataset from our group that involves 16S rRNA data from stool samples from lean, allergic to cow’s milk, obese and celiac children, and the Belgian Flemish Gut Flora Project cohort, which includes faecal 16S rRNA data from obese and normal-weight adult individuals. In the first case, q2-metnet outperforms existing algorithms in separating different clinical conditions based on predicted pathway abundances and subsystem scores. In the second case, q2-metnet complements competing approaches in predicting functional alterations in the gut microbiota of obese individuals. Overall, q2-metnet constitutes a powerful bioinformatics tool to provide metabolic context to 16S rRNA data from the human gut microbiota. Availability and implementation Python code of q2-metnet is available in https://github.com/PlanesLab/q2-metnet and https://figshare.com/articles/dataset/q2-metnet_package/26180446.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助隐形晓兰采纳,获得10
刚刚
小烦完成签到 ,获得积分10
1秒前
Yang发布了新的文献求助10
1秒前
aaaaaa发布了新的文献求助10
1秒前
简单发布了新的文献求助10
2秒前
SolderOH完成签到,获得积分10
2秒前
wh雨发布了新的文献求助10
2秒前
4秒前
Aditi发布了新的文献求助10
4秒前
Lyn发布了新的文献求助10
5秒前
香蕉觅云应助mbl2006采纳,获得10
5秒前
8秒前
科研通AI5应助mini采纳,获得10
8秒前
桐桐应助苏大肺雾采纳,获得30
9秒前
10秒前
怡轻肝发布了新的文献求助10
12秒前
13秒前
开朗尔冬完成签到,获得积分10
13秒前
lizhiqian2024发布了新的文献求助10
13秒前
SAODEN完成签到,获得积分10
15秒前
王泽皓完成签到,获得积分10
15秒前
卫三完成签到,获得积分20
16秒前
明天可以睡懒觉完成签到,获得积分10
16秒前
16秒前
赘婿应助破风老司机采纳,获得10
16秒前
田様应助果心纯采纳,获得10
16秒前
半柚发布了新的文献求助10
17秒前
丰富老鼠完成签到,获得积分10
17秒前
18秒前
wh雨完成签到,获得积分10
19秒前
踏实的求真完成签到,获得积分10
19秒前
学术裁缝完成签到,获得积分10
19秒前
那个笨笨发布了新的文献求助10
20秒前
24秒前
五十完成签到 ,获得积分10
25秒前
25秒前
0h完成签到,获得积分10
28秒前
29秒前
果心纯完成签到,获得积分10
29秒前
30秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802585
求助须知:如何正确求助?哪些是违规求助? 3348257
关于积分的说明 10337318
捐赠科研通 3064235
什么是DOI,文献DOI怎么找? 1682495
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010