Deep Stacking Kernel Machines for the Data-Driven Multi-Item, One-Warehouse, Multiretailer Problems with Backlog and Lost Sales

仓库 计算机科学 数据仓库 核(代数) 堆积 运筹学 数据挖掘 数据库 业务 数学 组合数学 营销 化学 有机化学
作者
Zhen-Yu Chen,Minghe Sun
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2022.0365
摘要

The data-driven, multi-item, one-warehouse, multiretailer (OWMR) problem is examined by leveraging historical data and using machine learning methods to improve the ordering decisions in a two-echelon supply chain. A deep stacking kernel machine (DSKM) and its adaptive reweighting extension (ARW-DSKM), fusing deep learning and support vector machines, are developed for the data-driven, multi-item OWMR problems with backlog and lost sales. Considering the temporal network structure and the constraints connecting the subproblems for each item and each retailer, a Lagrange relaxation–based, trilevel, optimization algorithm and a greedy heuristic with good theoretical properties are developed to train the proposed DSKM and ARW-DSKM at acceptable computational costs. Empirical studies are conducted on two retail data sets, and the performances of the proposed methods and some benchmark methods are compared. The DSKM and the ARW-DSKM obtained the best results among the proposed and benchmark methods for the applications of ordering decisions with and without censored demands and with and without new items. Moreover, the implications in selecting suitable, that is, prediction-then-optimization and joint-prediction-and-optimization, frameworks, models/algorithms, and features are investigated. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grant 72371062]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0365 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0365 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JensenPD完成签到,获得积分10
2秒前
2秒前
3秒前
ccob完成签到,获得积分10
5秒前
乔迪完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
Yan完成签到,获得积分10
7秒前
xsss发布了新的文献求助10
7秒前
戴衡霞完成签到,获得积分10
8秒前
8秒前
9秒前
MrRaBB完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
lzl007完成签到 ,获得积分10
11秒前
YHY完成签到,获得积分10
12秒前
12秒前
英吉利25发布了新的文献求助10
13秒前
隐形的星月完成签到,获得积分10
15秒前
淡然的奎完成签到,获得积分10
16秒前
诚心熊猫完成签到,获得积分10
16秒前
顾勇完成签到,获得积分0
17秒前
Lollipopzz完成签到 ,获得积分10
17秒前
Selonfer完成签到,获得积分10
19秒前
家的温暖完成签到,获得积分10
25秒前
dyk完成签到,获得积分10
26秒前
陈尹蓝完成签到 ,获得积分10
26秒前
28秒前
28秒前
舒适的泽洋完成签到,获得积分10
29秒前
Karry完成签到 ,获得积分10
30秒前
31秒前
31秒前
书颜发布了新的文献求助10
31秒前
努力向上的小刘完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539257
求助须知:如何正确求助?哪些是违规求助? 4626036
关于积分的说明 14597438
捐赠科研通 4566884
什么是DOI,文献DOI怎么找? 2503668
邀请新用户注册赠送积分活动 1481567
关于科研通互助平台的介绍 1453146