亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Stacking Kernel Machines for the Data-Driven Multi-Item, One-Warehouse, Multiretailer Problems with Backlog and Lost Sales

仓库 计算机科学 数据仓库 核(代数) 堆积 运筹学 数据挖掘 数据库 业务 数学 组合数学 营销 化学 有机化学
作者
Zhen-Yu Chen,Minghe Sun
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2022.0365
摘要

The data-driven, multi-item, one-warehouse, multiretailer (OWMR) problem is examined by leveraging historical data and using machine learning methods to improve the ordering decisions in a two-echelon supply chain. A deep stacking kernel machine (DSKM) and its adaptive reweighting extension (ARW-DSKM), fusing deep learning and support vector machines, are developed for the data-driven, multi-item OWMR problems with backlog and lost sales. Considering the temporal network structure and the constraints connecting the subproblems for each item and each retailer, a Lagrange relaxation–based, trilevel, optimization algorithm and a greedy heuristic with good theoretical properties are developed to train the proposed DSKM and ARW-DSKM at acceptable computational costs. Empirical studies are conducted on two retail data sets, and the performances of the proposed methods and some benchmark methods are compared. The DSKM and the ARW-DSKM obtained the best results among the proposed and benchmark methods for the applications of ordering decisions with and without censored demands and with and without new items. Moreover, the implications in selecting suitable, that is, prediction-then-optimization and joint-prediction-and-optimization, frameworks, models/algorithms, and features are investigated. History: Accepted by Ram Ramesh, Area Editor for Data Science and Machine Learning. Funding: This work was supported by the National Natural Science Foundation of China [Grant 72371062]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.0365 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2022.0365 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
10秒前
盼盼完成签到,获得积分10
15秒前
牧紊完成签到 ,获得积分10
26秒前
Aaron完成签到 ,获得积分0
27秒前
善良的剑通完成签到 ,获得积分10
38秒前
柯语雪完成签到 ,获得积分10
1分钟前
英姑应助damturexu采纳,获得10
2分钟前
Orange应助科研通管家采纳,获得10
2分钟前
3分钟前
schnappi发布了新的文献求助10
3分钟前
爆米花应助schnappi采纳,获得10
3分钟前
3分钟前
楠俊完成签到,获得积分10
3分钟前
楠俊发布了新的文献求助10
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
glaze关注了科研通微信公众号
4分钟前
4分钟前
执着乐双完成签到,获得积分10
5分钟前
glaze完成签到,获得积分10
5分钟前
Raul完成签到 ,获得积分10
6分钟前
Milo完成签到,获得积分10
6分钟前
充电宝应助glaze采纳,获得10
6分钟前
科研通AI5应助天庭少女采纳,获得30
7分钟前
7分钟前
天庭少女发布了新的文献求助30
7分钟前
天庭少女完成签到,获得积分10
7分钟前
8分钟前
glaze发布了新的文献求助10
8分钟前
8分钟前
高高元柏发布了新的文献求助10
8分钟前
cc完成签到,获得积分20
9分钟前
科研通AI5应助烟消云散采纳,获得10
9分钟前
Hello应助xiaolang2004采纳,获得10
9分钟前
Luke Gee完成签到 ,获得积分10
9分钟前
9分钟前
schnappi发布了新的文献求助10
9分钟前
9分钟前
烟消云散发布了新的文献求助10
9分钟前
gszy1975完成签到,获得积分10
10分钟前
11分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792529
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10282027
捐赠科研通 3053532
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468